

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

DISCOVERY OF BENT FUNCTIONS USING THE FAST
WALSH TRANSFORM

by

Timothy R. O’Dowd

December 2010

 Thesis Co-Advisors: Jon T. Butler
 Pantelimon Stanica

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2010

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Discovery of Bent Functions Using the Fast Walsh
Transform

6. AUTHOR(S) Timothy R. O’Dowd

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ______N.A.__________.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
 A

13. ABSTRACT (maximum 200 words)
Linear cryptanalysis attacks are a threat against cryptosystems. These attacks can be defended against by using combiner functions
composed of highly nonlinear Boolean functions. Bent functions, which have the highest possible nonlinearity, are uncommon. As
the number of variables in a Boolean function increases, bent functions become extremely rare. A method of computing the
nonlinearity of Boolean functions using the Fast Walsh Transform (FWT) is presented.

The SRC-6 reconfigurable computer allows testing of functions at a much faster rate than a PC. With a clock frequency of
100 MHz, throughput of the SRC-6 is 100,000,000 functions per second. An implementation of the FWT used to compute the
nonlinearity of Boolean functions with up to five variables is presented.

Since there are
22

n

Boolean functions of n variables, computation of the nonlinearity of every Boolean function with six or
more variables takes thousands of years to complete. This makes discovery of bent functions difficult for large n. An algorithm is
presented that uses information in the FWT of a function to produce similar functions with increasingly higher nonlinearity. This
algorithm demonstrated the ability to enumerate every bent function for n = 4 without the necessity of exhaustively testing all four-
variable functions.

15. NUMBER OF
PAGES

122

14. SUBJECT TERMS
Bent Functions, Cryptography, Field Programmable Gate Array (FPGA), Reconfigurable
Computer, Fast Walsh Transform.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

DISCOVERY OF BENT FUNCTIONS USING THE FAST WALSH
TRANSFORM

Timothy R. O’Dowd
Lieutenant, United States Navy

B.S., Carnegie Mellon University, 2005

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2010

Author: Timothy R. O’Dowd

Approved by: Jon T. Butler
Thesis Co-Advisor

Pantelimon Stanica
Thesis Co-Advisor

Clark Robertson
Chairman, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Linear cryptanalysis attacks are a threat against cryptosystems. These attacks can be

defended against by using combiner functions composed of highly nonlinear Boolean

functions. Bent functions, which have the highest possible nonlinearity, are uncommon.

As the number of variables in a Boolean function increases, bent functions become

extremely rare. A method of computing the nonlinearity of Boolean functions using the

Fast Walsh Transform (FWT) is presented.

The SRC-6 reconfigurable computer allows testing of functions at a much faster

rate than a PC. With a clock frequency of 100 MHz, throughput of the SRC-6 is

100,000,000 functions per second. An implementation of the FWT used to compute the

nonlinearity of Boolean functions with up to five variables is presented.

Since there are 22
n

Boolean functions of n variables, computation of the

nonlinearity of every Boolean function with six or more variables takes thousands of

years to complete. This makes discovery of bent functions difficult for large n. An

algorithm is presented that uses information in the FWT of a function to produce similar

functions with increasingly higher nonlinearity. This algorithm demonstrated the ability

to enumerate every bent function for n = 4 without the necessity of exhaustively testing

all four-variable functions.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. OBJECTIVE ..1
B. BACKGROUND ..1
C. METHOD ...2
D. RELATED WORK ..3
E. THESIS OUTLINE..4

II. BENT BOOLEAN FUNCTIONS ...5
A. DEFINITIONS ...5

1. Boolean Function ...5
2. Truth Table (TT)..5
3. Term..6
4. Weight ...6
5. Hamming Distance...6
6. Linear Function..7
7. Affine Function...7
8. Nonlinearity ..7
9. Bent Function ...8

B. CHARACTERISTICS...8
1. Notation...8
2. Nonlinearity of Bent Functions...9
3. Number of Bent Functions ..9

C. SIEVE METHOD FOR BENT FUNCTION DISCOVERY........................9
1. Bitwise Exclusive-OR Operation..10
2. Ones Count ...11
3. Minimum ..12
4. Achievable Speed-Up...12
5. Limitations..13

III. FAST WALSH TRANSFORM...15
A. INTRODUCTION..15
B. COMPUTATION...15
C. FWT COEFFICIENT RANGES..17
D. EXPECTED AND UNEXPECTED DISTANCE..17
E. BOOLEAN FUNCTION NONLINEARITY...19

IV. ALGORITHM FOR BENT FUNCTION DISCOVERY21
A. INTRODUCTION..21
B. INCREASING NONLINEARITY ...21
C. FWT SPECTRUM CHARACTERISTICS ...25
D. EFFECT OF TRUTH TABLE CHANGES ON FWT................................26
E. ALGORITHM FOR FINDING BENT FUNCTION GIVEN NEARLY

BENT FUNCTION ..28
1. Nonlinearity Five to Nonlinearity Six ..28

 viii

2. Nonlinearity Four to Nonlinearity Five ...31

V. COMPUTATION AND ANALYSIS..33
A. IMPLEMENTATION OF FWT ON SRC-6 ...33

1. About the SRC-6 ..33
2. Use of the SRC-6 ..34
3. Limitations of the SRC-6...35

B. RESULTS AND ANALYSIS OF IMPLEMENTATION OF FWT ON
THE SRC-6...36
1. Nonlinearity for n = 4 ..36
2. Nonlinearity for n = 5 ..37
3. Nonlinearity for n = 6 ..38
4. Trends of Performance Metrics..39

C. IMPLEMENTATION OF ALGORITHM ON PC USING MATLAB41

VI. CONCLUSIONS AND RECOMMENDATIONS...45
A. CONCLUSIONS ..45
B. RECOMMENDATIONS...45

APPENDIX A. SRC-6 CODE ..47
A1. COMPUTATION OF NONLINEARITY USING SIEVE METHOD

FOR N=4...47
1. main.c ..47
2. subr.mc..48
3. Makefile ..49
4. blk.v ...51
5. Info File ...51
6. nonlin.v..52

A2. COMPUTATION OF NONLINEARITY USING FWT FOR N=456
1. main.c ..56
2. subr.mc..57
3. Makefile ..58
4. blk.v ...60
5. Info File ...60
6. FWTNL.v..60

APPENDIX B. MATLAB CODE ..69
B1. ALGORITHM FOR PRODUCING BENT FUNCTION TRUTH

TABLE..69
1. FWT.m ..70
2. NL.m..72
3. functGen.m ...73
4. NLthree.m...74
5. NLfour.m ..79
6. NLfive.m ...84
7. findbent3.m...88
8. findbent3to5.m ...89
9. findbent3to6.m ...91

 ix

10. findbent4.m...92
11. findbent4to6.m ...94
12. findbent5.m...95

LIST OF REFERENCES..97

INITIAL DISTRIBUTION LIST ...99

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Sieve Method Architecture for Bent Function Discovery (From [15]).10
Figure 2. Bitwise Exclusive-OR Architecture (From [15])...11
Figure 3. Ones Count Architecture (From [15])..11
Figure 4. Minimum Architecture (From [15])...12
Figure 5. Example of In-Place Butterfly Module..16
Figure 6. Example of a Computation of Fast Walsh Transform.16
Figure 7. Example of a Computation of Nonlinearity From Fast Walsh Transform.20
Figure 8. Distribution of Nonlinearity for Boolean Functions With n = 4 (From

[18])..23
Figure 9. Distribution of Four-Variable Functions Over Nonlinearity and Weight

(From [18])...24
Figure 10. Changes in Values of FWT Elements Caused by a 0 to 1 Transition in a

Function’s TT...27
Figure 11. Changes in Values of FWT Elements Caused by a 1 to 0 Transition in a

Function’s TT...28
Figure 12. Algorithm for Finding Bent Function Given Four-Variable Function With

Nonlinearity of Five...30
Figure 13. Algorithm for Finding a Function With Nonlinearity of Five Given a Four-

Variable Function With Nonlinearity of Four. ..32
Figure 14. Layout of the SRC-6 (From [15]). ...33
Figure 15. Distribution of Functions With Four Variables by Nonlinearity.37
Figure 16. Distribution of Functions With Five Variables by Nonlinearity.38
Figure 17. Trend of Frequency for Nonlinearity Computation Methods for Various n....40
Figure 18. Trend of Resource Utilization for Nonlinearity Computation Methods for

Various n. ...41
Figure 19. Sample Output of Algorithm That Discovers Nearby Bent Functions.42

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Computation of the Nonlinearity of 1 2 3 4B x x x x  (From [15]).8

Table 2. Number of Bent Functions on n Variables (From [12]).9
Table 3. Speed-Up Obtained by the SRC-6 Reconfigurable Computer (From [16]). ...13
Table 4. Unexpected Differences of Linear Functions From Example Function.18
Table 5. Unexpected Differences of the Complements of Affine Functions From

Example Function. ...19
Table 6. Possible Values Contained in FWT Elements for Various Nonlinearities

for n = 4..26
Table 7. Comparison of Methods for n = 4..36
Table 8. Comparison of Methods for n = 5..38
Table 9. Comparison of Methods for n = 6..39
Table 10. Summary of Algorithm Results for n = 4. ...43

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS AND ABBREVIATIONS

AES Advanced Encryption Standard

FPGA Field Programmable Gate Array

FWT Fast Walsh Transform

LUT Lookup Table

MAP Multi-Adaptive Processing

NL Nonlinearity

OBM On Board Memory

TT Truth Table

WHT Walsh-Hadamard Transform

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

EXECUTIVE SUMMARY

Linear cryptanalysis attacks are a threat against cryptosystems. These attacks can be

defended against by using combiner functions composed of highly nonlinear Boolean

functions. Bent functions, which were introduced by O.S. Rothaus in the 1960s, are

noteworthy for this reason. Bent functions are Boolean functions having the largest

possible minimum Hamming distance from the set of affine functions. Thus, bent

functions have the highest possible nonlinearity. Bent functions, however, are

uncommon. As the number of variables in a Boolean function increases, bent functions

become extremely rare. In this thesis, a method of computing the nonlinearity of Boolean

functions using the Fast Walsh Transform (FWT) is presented.

The FWT is an efficient algorithm for computing a Walsh-Hadamard Transform

(WHT). The WHT computation involves use of a recursive matrix operation, that is

1 1

1 1

n n
n

n n

WHT WHT
WHT

WHT WHT
 

 

 
   

. The FWT computation, on the other hand, involves

repeatedly applying an “in-place butterfly” module to the inputs of a function's truth table

(TT). The in-place butterfly takes two inputs a and b from a TT and returns output values

a b and a b that are placed in the positions that were previously occupied by a and b,

respectively. The computational complexity of the FWT for a function with n variables is

n log(n), whereas it is n2 for the WHT.

The components of a function's FWT can be normalized, giving the Hamming

distance between the function and all the affine functions. The minimum of these

Hamming distances is the nonlinearity of the function.

The SRC-6 reconfigurable computer allows testing of functions at a much faster

rate than a PC. With a clock frequency of 100 MHz, throughput of the SRC-6 is

100,000,000 functions per second. An implementation of the FWT used to compute the

nonlinearity of Boolean functions with up to five variables is presented. This

implementation was shown to have comparable computation frequency to previously

used methods for computing nonlinearity. However, since there are 22
n

Boolean functions

 xviii

of n variables, computation of the nonlinearity of every Boolean function with six or

more variables takes thousands of years to complete. This makes discovery of the set of

bent functions difficult for large n.

Previous research on bent functions has discussed methods that reduce the

computation time of the nonlinearity of all functions for a given n. Other research has

focused on identifying specific groups of Boolean functions that are rich in bent

functions, which would allow discovery of all bent functions for a given n without having

to exhaustively all 22
n

functions. This thesis, on the other hand, investigated the

possibility of altering the TT of a non-bent Boolean function by using information

contained in its FWT to produce a new function with higher nonlinearity.

Several observations on the distribution of weights and nonlinearities of Boolean

functions suggested the ability to reliably discover similar functions of higher

nonlinearity through a trial-and-error technique. Observations on the characteristics of

these functions' FWTs provided criteria to efficiently produce functions of higher

nonlinearity. These observations led to the development of an algorithm that can reliably

and efficiently discover Boolean functions of high nonlinearity.

An algorithm is presented that uses information in the FWT of a function to

produce similar functions with increasingly higher nonlinearity. This algorithm

demonstrated the ability to enumerate every bent function for n = 4 without the necessity

of exhaustively testing all four-variable functions.

 xix

ACKNOWLEDGMENTS

I would like to thank my advisors, Drs. Jon T. Butler and Pante Stanica, for their

incredible guidance and patience. I never would have completed my thesis without their

help!

I would also like to thank my girlfriend, Rachel, for her love. Her support got me

through many long nights of writing.

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. OBJECTIVE

The motivation for this study is the importance bent Boolean functions play in

modern cryptology. The availability of the SRC-6 computer at the Naval Postgraduate

School has allowed the generation and testing of billions of Boolean functions. A

reconfigurable computer has never previously been used to implement a Fast Walsh

Transform in order to test Boolean functions. The objective is to be able to quickly

determine the nonlinearity of a given Boolean function using a Fast Walsh Transform and

subsequently discover a way to identify how close a given function is to a bent Boolean

function.

B. BACKGROUND

O. S. Rothaus introduced bent Boolean functions in the mid 1960s and published

in open literature in 1976 [1]. The term bent was chosen to indicate the opposite of

linear. A bent function is a Boolean function that has maximum distance from each

member of the set of affine functions. Bent functions have practical applications in

cryptography, coding theory, and spread spectrum communications [2]. This thesis

concentrates on bent functions as they apply to cryptography. The Department of

Defense and the National Security Agency are interested in developing

encryption/decryption methods that are resilient to attack. Code-breaking efforts during

World War II demonstrated the importance of communication security in military

operations. Communication security is a fundamental aspect of Department of Defense

Information Warfare doctrine [3]. Having a method for dependably discovering bent

Boolean functions can enable the creation of a source of cryptographic elements and can

enhance communication security.

Security of information flow across the Internet is also an important issue. The

National Institute of Standards and Technology (NIST) adopted the Advanced Encryption

Standard (AES) in 1998. The AES uses a block cipher involving a randomly generated

key combined with the plaintext message. Some of these steps involve substitution boxes

 2

(S-boxes) with high nonlinearity characteristics. The encryption aspect of the cipher is an

area where bent functions, or modified bent functions, are of particular importance.

Research on cryptographic Boolean functions is being conducted by universities,

technical businesses and government agencies [4], [5], [6]. In code-breaking, a linear

attack is a well-known method. However, highly nonlinear Boolean functions are

resistant against this attack. The nonlinearity of Boolean functions is only one property

necessary to develop strong cryptographic functions. Characteristics like propagation

criteria, strict avalanche criteria, correlation immunity, and balancedness (among other

criteria) are also being researched [7]. In addition, construction of bent functions from

smaller bent functions is a topic of increasing study [8]. The ability to combine small

bent functions into larger bent functions will lessen the burden of exhaustively testing

and searching for bent functions with larger numbers of variables. This is useful because

there are so many functions for n≥6 that it is impractical to enumerate all of them.

C. METHOD

The truth table (TT) of a Boolean function is an output string of ones and zeros

obtained by assigning all combinations of inputs to the variables that constitute the

Boolean function.

The TT of a Boolean function is used as an input to the Fast Walsh Transform. A

Fast Walsh Transform (FWT) is a simplified version of a Walsh-Hadamard Transform

[9]. The FWT of a Boolean function allows one to identify if the function is bent simply

by inspection. In addition, the nonlinearity can be quickly obtained by manipulating the

FWT. By contrast, nonlinearity has previously been computed by finding the distance

between the Boolean function in question from every affine function and taking the

maximum of these distances. The TT of a Boolean function on n variables has a length of

2n, and the number of affine functions is 2n+1, which shows that as n increases, the length

of the TT and the number of affine functions doubles at every single step.

The SRC-6 computer is used here to perform computations on many Boolean

functions. This computer uses a Field Programmable Gate Array (FPGA) that turns

VERILOG and C code into hardware that executes faster than a PC. An important

 3

advantage that the FPGA provides is the ability to pipeline. This is prominent with a

large circuit with significant delay. Pipelining allows the computer to divide a process

into multiple steps, so that while one function moves from the first stage to the second

stage, another function can be input to the first stage. This ability to test many functions

simultaneously greatly speeds up computation time. With pipelining, a function can be

tested every clock period. The SRC-6 uses a 100 MHz FPGA processor, allowing one

hundred million functions to be evaluated every second. This makes the SRC-6 much

faster than a modern PC, which has a faster processor but cannot pipeline in the way the

SRC-6 can.

D. RELATED WORK

Bent Boolean functions are an important research topic in cryptography. In

particular, functions with many variables are of interest. If the number n of variables in a

function increases by one, the function's length doubles. The number of Boolean

functions grows “super-exponentially” as 22
n

. Due to the rapidly increasing number of

Boolean functions, it quickly becomes impractical to simply test all Boolean functions

and “sieve” out those that are bent or that have some other cryptographic property.

Alternative methods for discovering bent functions have recently included binary

decision trees [10] and genetic algorithms [11]. Another approach has been the use of the

transeunt triangle on a TT to derive a function's algebraic normal form, which easily

allows for determination of a function’s degree and homogeneity [12]. This approach

allows eliminating a substantial number of Boolean functions from consideration, as it

has been shown that there are no bent functions of degree m on 2m variables for m>3

[13]. Circular pipelining is another method of searching for bent functions that has been

shown to produce a speedup of 55 times at n=6 [14].

 4

E. THESIS OUTLINE

The outline is as follows. Chapter I is the introduction, Chapter II is an

explanation of bent functions, Chapter III is an explanation of the Fast Walsh Transform,

a heuristic for identifying bent Boolean functions is developed in Chapter IV, some

results and our analysis are displayed in Chapter V, and conclusions and

recommendations are provided in Chapter VI. Appendix A contains code for the SRC-6,

and Appendix B contains MATLAB code.

 5

II. BENT BOOLEAN FUNCTIONS

A. DEFINITIONS

Let Vn be the vector space of dimension n over the two-element field F2:

1{(,...,) | {0,1}}n n iV x x x 

1. Boolean Function

A Boolean function f on n variables is a map from the n-dimensional vector

space Vn = F to F2, the two element field.

2. Truth Table (TT)

A truth table (fTT) is the output table of the Boolean function f, where the input

runs through the entire vector space in order. For example, the elements of the truth table

are 0 (0,0,...,0)f f , 1 (0,0,...,1)f f ,...,
2 1

(1,1,...,1)nf f

 . The truth table is defined by

the sequence of bits 0 1 2 1
(...)nfTT f f f


 .

Example 2.1. The truth table of the AND of two variables is:

x1 x2 f

0 0 0

0 1 0

1 0 0

1 1 1

 6

This is the function that is formally written as 1 2 1 2(,)f x x x x . We denote this

truth table by 0001fTT  .

Example 2.2. The truth table of the OR of two variables is:

x1 x2 f

0 0 0

0 1 1

1 0 1

1 1 1

This is the function that is formally written 1 2 1 2(,)f x x x x  . We denote this truth

table by 0111fTT  .

3. Term

A term is the AND of variables or their complement.

4. Weight

The weight of a truth table is the number of 1’s in the truth table. For example,

0111fTT  has a weight of 3 and has a weight of 1.

5. Hamming Distance

The Hamming distance d(f,g) between two functions f and g is the number of

places where their truth tables differ. It can also be interpreted as the Hamming weight of

f gTT TT , that is, the sum of the ones in the result of a bit-wise Exclusive-Or of the truth

tables of f and g.

 7

Example 2.3. The Hamming distance between two functions f and g:

:fTT 01010101

:gTT 11001100

:f gTT TT 10011001

(,) :d f g 4

The Hamming distance is 4, as there are four bits where the truth tables of f and g

differ.

6. Linear Function

A linear function is the Exclusive-Or of single variables. For example,

1 2 3 1 2(, ,)f x x x x x  .

7. Affine Function

An affine function is a linear function or the complement of a linear function. For

example, 1 2 3 1 2(, ,) 1f x x x x x   is an affine function.

8. Nonlinearity

The nonlinearity (NLf) of a function f is the minimum Hamming distance

between f and all affine functions. An example where the function 1 2 3 4B x x x x  is

tested against all affine functions for n=4 is given in Table 1. This function’s nonlinearity

is six.

 8

Table 1. Computation of the Nonlinearity of 1 2 3 4B x x x x  (From [15]).

9. Bent Function

A bent function is a Boolean function that attains the upper bound on the

nonlinearity (see next section), which happens only if n is even.

B. CHARACTERISTICS

1. Notation

In this thesis, the number of variables in a function is referred to as n. If n = 4, the

variables are listed as 4 3 2 1, , ,x x x x . There are 2n bits in the truth table with n variables.

There are 22
n

 possible functions on n variables.

 9

2. Nonlinearity of Bent Functions

Rothaus [1] showed that bent functions have nonlinearity
11 22 2

n
n   . Thus, for

example, if 4n  , we know that a function f with 3fNL  is not bent.

3. Number of Bent Functions

The exact number of bent functions is only known for 8n  [16]. The known

number of bent functions is shown in Table 2. The number of bent functions increases

rapidly as n increases. In addition, the percentage of functions that are bent decreases as n

increases. For example, for 4n  , 42

896 896
1.3%

65,5362
  of the functions are bent. By

comparison, considering 6-variable functions, only 6

8

2

5,425,430,528
2.94 10 %

2
x  are

bent. The decrease in the proportion of functions that are bent and the rapid increase in

total functions as n increases contribute to making bent functions very difficult to find.

Table 2. Number of Bent Functions on n Variables (From [12]).

n Number of Bent Functions

4 896

6 5,425,430,528

8 9.9x1031

C. SIEVE METHOD FOR BENT FUNCTION DISCOVERY

An approach to finding bent functions is to enumerate every truth table

sequentially and compare each truth table to all affine functions simultaneously. A block

diagram of this method is shown in Figure 1. The function being tested is XOR'd bitwise

with each affine function. Each result is then routed to a “Ones Count” that determines

 10

the Hamming distance between the function being tested and each affine function.

Finally, the Hamming distances are routed to a “Minimum” circuit that determines the

lowest value among the Hamming distances. The output of the “Minimum” circuit is the

nonlinearity of the function being tested.

This has been implemented on the SRC-6, producing the nonlinearity of one

function per clock or 100,000,000 functions per second. Each module comprising the

sieve method will be discussed further below.

Figure 1. Sieve Method Architecture for Bent Function Discovery (From [15]).

1. Bitwise Exclusive-OR Operation

The bitwise Exclusive-OR operation applies to each affine function. Each input is

a bus with width 2n bits. The corresponding bits of each input are applied to a 2-input

XOR gate. The output of the XOR gates is a bus with width 2n bits. This is shown in

Figure 2.

 11

Figure 2. Bitwise Exclusive-OR Architecture (From [15]).

2. Ones Count

The Ones Count circuit is a logic tree starting with
2

4

n

-input adders. The tree

ends with an adder that produces a 1n bit wide output. This output is the Hamming

distance to the affine function that was input to the bitwise Exclusive-OR operation. This

is shown in Figure 3.

Figure 3. Ones Count Architecture (From [15]).

 12

3. Minimum

The circuitry to find the minimum amongst all the Hamming distances is shown

in Figure 4. This circuit is also a logic tree, with each minimum block taking two 1n bit

inputs and producing the smaller of the inputs as an 1n bit output. The output of this

module is the nonlinearity of the function being tested. This is shown in Figure 4.

Figure 4. Minimum Architecture (From [15]).

4. Achievable Speed-Up

Implementation of the sieve method on the SRC-6 has been shown to achieve

significant speed-up over a PC [16]. The large number of operations occurring in parallel

on the SRC-6 are executed in serial on a conventional computer. For example, a PC

executes 12n bitwise XOR operations for every affine function. The SRC-6 executes all

of the bitwise XOR operations in parallel in one clock cycle. Speed-up factors attained

with the SRC-6 are shown in Table 3. Of note is the fact that the speed-up factors actually

increase as n increases.

 13

Table 3. Speed-Up Obtained by the SRC-6 Reconfigurable Computer (From [16]).

5. Limitations

It is clear from Table 3 that an exhaustive computation of the nonlinearity of all

functions where 6n  is not feasible, despite the speedup offered by using the SRC-6.

This paper discusses an alternative method of computing the nonlinearity of a Boolean

function, the Fast Walsh Transform (FWT). The FWT and an implementation of the

FWT on the SRC-6 that finds the nonlinearity of all functions for a given number of

variables are discussed in the next chapter. A heuristic method for converging on a bent

function given a function that is not bent is discussed in Chapter IV. The method uses the

FWT to determine how to converge.

 14

THIS PAGE INTENTIONALLY LEFT BLANK

 15

III. FAST WALSH TRANSFORM

A. INTRODUCTION

Walsh-Hadamard transforms (WHTs) are recursively computed 2n by 2n matrices

that are multiplied by a vector. For n = 0, the WHT matrix is defined to be WHT0 = 1.

For greater n, the WHT matrix is defined as [17]:

 1 1

1 1

1

2
n n

n
n n

WHT WHT
WHT

WHT WHT
 

 

 
   

 (1)

The factor preceding the matrix is a normalization factor. This factor is often

omitted. This matrix is then multiplied by a vector containing the TT of a function to

compute the WHT.

The fast Walsh transform (FWT) is an efficient method for computing a WHT.

The WHT has a computational complexity of n2. The FWT, on the other hand, has a

computational complexity of n log(n). This is a significant reduction in the amount of

required computations [9].

B. COMPUTATION

The FWT is a relatively simple computation. Given a valid TT, pairs of digits

from the TT are coupled and modified by an “in-place butterfly” module. Here, the term

“in-place” means that the values produced by the butterfly module output are placed in

the same position from which the butterfly module inputs came. For inputs a and b, the

outputs of the butterfly module will be a+b and a-b, respectively. An example of the

butterfly module is shown in Figure 5.

 16

Figure 5. Example of In-Place Butterfly Module.

The first set of butterfly modules pairs adjacent elements and produces a 2n

element array. This process is repeated a second time, pairing every other element in the

first array to produce a second array. The third iteration will pair every fourth element in

the second array, and so on. A complete computation of the FWT of a TT with 3n  is

shown in Figure 6.

Figure 6. Example of a Computation of Fast Walsh Transform.

 17

C. FWT COEFFICIENT RANGES

An interesting and important observation is the value of the first element of the

FWT, which shall be referred to as FWT0. The value of FWT0 is equal to the weight of

the input TT, which is the number of ones contained in the input TT. This is always true,

since the first element of the iterations of the FWT computation always receives the left

portion of the butterfly ()a b . Therefore, its output is the sum of all bits in the TT and

FWT0 has a range of values from zero to 2n .

The other elements of the FWT also have a range that is dependent on n. As n

increases, computation of the FWT requires more iterations. Each iteration produces

another array and expands the range of each element in the array. For example, the TT

elements only have range from 0 to 1. The first array of the FWT computation will have a

maximum value of 2 and a minimum value of 1 . The second array of the FWT

computation will have a maximum value of 4 and a minimum value of 3 . The third

array (which is the FWT in the example shown in Figure 6) will have a maximum value

of 8 and a minimum value of 7 . Generalizing this pattern, the FWT result will be the

nth array and the gth array will have a maximum value of 2g and a minimum value of

(2 1)g  .

D. EXPECTED AND UNEXPECTED DISTANCE

Consider an example function f with 10011100fTT  where 3n  . Since there

are 8 bits in the TT of f and each bit is assumed to have an equal probability of being

either a one or a zero, we can expect that the average Hamming distance between f and

any other function with 3n  to be equal to half the number of bits in the TT. This value

is referred to as the expected distance [9] to f and in this example is
2

4
2

n

 .

Now let us consider an affine function with 3n  , namely, with the truth table

01100110gTT  . Computing the Hamming distance gives (,) 6d f g  . The difference

between this Hamming distance and the expected difference is 2 and is referred to as the

unexpected distance [9]. The greater the magnitude of the unexpected difference, the

 18

more bent the function is. The Hamming distances and unexpected differences between

all of the affine functions and function f are displayed below in Table 4.

Table 4. Unexpected Differences of Linear Functions From Example Function.

Linear Function Truth Table Hamming

Distance

Unexpected

Distance

1 11111111 4 0

1x 01010101 4 0

2x 00110011 6 +2

2 1x x 01100110 6 +2

3x 00001111 4 0

3 1x x 01011010 4 0

3 2x x 00111100 2 2

3 2 1x x x  01101001 6 +2

Example Function Truth Table

f 10011100

The complements of the linear functions in Table 4 are comprise the remainder of

the affine functions and are shown in Table 5. Note that the unexpected differences of the

functions in Table 5 are the negatives of those in Table 4. Therefore, it becomes

unnecessary to consider the complements of the affine functions.

 19

Table 5. Unexpected Differences of the Complements of Affine Functions From
Example Function.

Complements of Linear Functions Truth Table Hamming Distance Unexpected

Distance

0 00000000 4 0

1 1x  10101010 4 0

2 1x  11001100 2 2

2 1 1x x  10011001 2 2

3 1x  11110000 4 0

3 1 1x x  10100101 4 0

3 2 1x x  11000011 6 +2

3 2 1 1x x x   10010110 2 2

Example Function Truth Table

f 10011100

E. BOOLEAN FUNCTION NONLINEARITY

Consider the example function f with 10011100fTT  . This function’s FWT was

computed as the example in Figure 6 and was shown to be

4 0 2 2 0 0 2 2fFWT   . Recalling that FWT0 is equal to the number of ones

in the TT, we now note that the remaining digits of the FWT correspond exactly to the

magnitude and sign of the unexpected differences shown in Table 4. Thus, the FWT is an

easy way to quickly compute the unexpected difference between a function and every

affine function.

 20

From the FWT it is relatively simple to determine the nonlinearity of the function.

The first step is to add 2
2

n
 to every element of the FWT except FWT0. This gives an

array of nonlinearities for both the affine functions and complements of affine functions.

Recall from Table 1 that when a function has a Hamming Distance of d from an affine

function, then that function has a Hamming Distance of 2n d from the complement of

that affine function. Since the nonlinearity of a function is found using only the smallest

of the Hamming Distances, we apply a conditional statement to each element of the array

of nonlinearities. If an element is greater than 2
2

n
, then we subtract the nonlinearity

from 2n to get the smaller nonlinearity. If an element is less than or equal to 2
2

n
, then no

adjustment is needed. Finally, the nonlinearity of the function is the smallest of all

adjusted elements. This process is demonstrated in Figure 7.

Figure 7. Example of a Computation of Nonlinearity From Fast Walsh Transform.

 21

IV. ALGORITHM FOR BENT FUNCTION DISCOVERY

A. INTRODUCTION

Previous methods of bent function discovery, such as the sieve method described

in Chapter I, focused on exhaustive enumeration of all Boolean functions. Other studies

have attempted to overcome the difficulty in exhaustive enumeration by focusing on a

specific subset of Boolean functions [12]. By contrast, it was a primary objective of this

thesis to explore the possibility of identifying bent functions via modification of a TT that

was not bent using information from its FWT. Such a process would take the TT of a

non-bent function and produce a “nearby” function with a greater nonlinearity. For this

thesis, a “nearby” function will be defined as a function with a Hamming distance of one

from the original one. Due to the ease in computation and better demonstrability, this

thesis will consider this objective using the n = 4 case.

B. INCREASING NONLINEARITY

When the nonlinearity of a function is low, finding a nearby function with higher

nonlinearity is a relatively easy task. Taking any affine function and changing any single

bit of its TT will give a new function with a nonlinearity of one. There are (16,1) 16C 

ways to change one bit, and with 32 affine functions, this gives (16)(32) = 512 functions.

As shown in Figure 8, there are 512 functions with nonlinearity of one.

 Now consider the case where one modifies any two bits of an affine function’s

TT. There are (16,2) 120C  ways to change two bits of an affine function’s TT. Since

there are 32 affine functions, there should be (120)(32) = 3840 functions with

nonlinearity of two. The existence of 3,840 unique functions with nonlinearity of two is

confirmed in Figure 8. Thus, changing any two bits of an affine function increases

nonlinearity by two.

One can go further and consider the case where any three bits of an affine

function’s TT are modified. Here there are (16,3) 560C  ways to change three bits of an

affine function’s TT. This implies there should be (560)(32) = 17,920 functions with

 22

nonlinearity of 3. The existence of 17,920 unique functions with nonlinearity of three is

also confirmed in Figure 8. Thus, changing any three bits of an affine function increases

nonlinearity by three.

Note that this pattern does not hold when considering the number of functions

with nonlinearity of four. This is because when a nonlinearity of four has been reached,

there will be a great number of functions that would be “double counted.” For example,

consider the affine function 0f  and the affine function 1g x . These functions have

TTs of 0000000000000000fTT  and 0101010101010101gTT  , respectively. It is

possible to alter four different bits in each truth table and end up with the same function

with 0101010100000000hTT  . Function h has a nonlinearity of four.

An interesting observation was made about functions with nonlinearity of five.

Note that there are exactly 16 times as many functions with nonlinearity of five as there

are bent functions. Exhaustive testing for four-variable functions showed that for every

function with nonlinearity of five, there was exactly one bit that when complemented

yielded a bent function. A change in any other bit would yield a function with

nonlinearity of four, however. This fact demonstrates that it is no longer trivial to find

nearby functions with higher nonlinearity when a function is nearly bent.

 23

Figure 8. Distribution of Nonlinearity for Boolean Functions With n = 4 (From [18]).

Another distribution of four-variable functions is shown in Figure 9. This

distribution is broken down by nonlinearity and weight. This figure nicely illustrates the

ease of increasing the nonlinearity of functions that are nearly affine and the difficulty of

increasing the nonlinearity of functions that are nearly bent.

An interesting observation that can be made from Figure 9 is that complementing

any bit of any function’s truth table will produce a function with a different nonlinearity,

either higher or lower. For instance, consider the functions with a nonlinearity of three

and a weight of three. Complementing any bit of such a function produces a function with

a weight of either two or four. This will always produce a function with a nonlinearity of

two or a nonlinearity of four, because there are no functions of nonlinearity three with a

weight of two or four. This pattern holds for all functions of any nonlinearity or weight.

 24

Consider a function with a nonlinearity of two and weight of two. It is trivial to

find a nearby function with increased nonlinearity. Complementing any 0 bit in this

function’s truth table will produce a function with nonlinearity of three and weight of

three. Note that it is impossible to do this and receive a function with lower nonlinearity,

since there are no functions with a nonlinearity of one and weight of three for n = 4.

Now consider a function with a nonlinearity of five and weight of five. As shown

by Figure 9, there are 2,688 such functions. In order to have a bent function, the weight

must be increased by one since all bent functions have weight of six or ten. However,

increasing the weight is far more likely to actually decrease the nonlinearity. Note that for

a weight of six, there are exactly fifteen times more functions with nonlinearity of four

(6,720) than there are with nonlinearity of six (448).

Figure 9. Distribution of Four-Variable Functions Over Nonlinearity and Weight
(From [18]).

 25

This may not seem particularly problematic, as using a trial-and-error method to

determine which bit to change to go from a nonlinearity of five to a nonlinearity of six

will take at most 16 attempts. However, the amount of potential attempts grows

exponentially as n increases, as there are 2n bits in a TT. In addition, each attempt entails

a computation of a function’s nonlinearity in order to determine if the trial was successful

or not. Recall that using the sieve method to compute the nonlinearity may take many

clock cycles, and using the FWT to compute the nonlinearity takes multiple clock cycles

as well. In addition, as n increases, the number of clock cycles required to compute the

nonlinearity via the sieve method or by the FWT increases as well. Clearly, a trial-and-

error method to produce a bent function is not a fast process.

In order to reduce the number of amount of time needed to find a nearby function

with higher nonlinearity, we will use characteristics of the FWT to immediately eliminate

many potential bit changes and greatly speed up discovery of bent functions.

C. FWT SPECTRUM CHARACTERISTICS

An exhaustive examination of the FWTs of Boolean functions with 4n 

revealed interesting information about the composition of FWTs. For each nonlinearity, a

FWT always consisted of a specific set of values (except for the FWT0 term, which is

simply the function’s weight). The FWT of a bent function with nonlinearity of six

always consisted only of values of 2 and 2 . The FWT of a function with nonlinearity of

five always consisted only of values contained in the set { 3 , 1 ,1,3}. Likewise, the

FWT of a function with nonlinearity of four always consisted only of values contained in

the set { 4 , 2 ,0,2,4}. FWTs for functions with nonlinearities of three, two, one, and

zero all have specific sets of values as well. These observations are shown in Table 6.

The placement of these values throughout the FWT varies with the function being

considered, but the values present in the FWT are affected only by the function’s

nonlinearity. This trait was also noted in limited observation of functions with n = 6, but

due to our inability to exhaustively test the FWTs of these functions, this thesis will focus

on the n = 4 case.

 26

Table 6. Possible Values Contained in FWT Elements for Various Nonlinearities for
n = 4.

Nonlinearity Possible Values Contained in FWT Elements (Except FWT0)

6 2 , 2

5 3 , 1 , 1, 3

4 4 , 2 , 0, 2, 4

3 5 , 3 , 1 , 1, 3, 5

2 6 , 2 , 0, 2, 6

1 7 , 1 , 1, 7

0 8 , 0, 8

D. EFFECT OF TRUTH TABLE CHANGES ON FWT

It has already been established that changing a 0 bit to a 1 bit in a given TT

increments the value of FWT0 by one. An interesting question was whether or not the

values of the other elements of the FWT could also be predictably altered by a change in

the function’s TT. It was discovered that one can indeed predict the change in any

element of a FWT caused by a change in the function’s TT.

Exhaustive testing showed the derivation of the values shown in Figure 10 and

Figure 11. The effects on each element of the FWT due to a 0 to 1 transition in any TT

element and due to a 1 to 0 transition in any TT element, respectively, are shown. For

example, if one were to change TT5 from a zero to a one, FWT0 will increase by one,

FWT1 will decrease by one, FWT2 will increase by one, and so on. If one were to change

TT6 from a 1 to a 0, FWT0 will decrease by one, FWT1 will decrease by one, FWT2 will

increase by one, FWT3 would increase by one, and so on.

 27

It is noteworthy that the values contained in Figure 10 are exactly equivalent to

the Walsh-Hadamard Transform matrix WHT5, where 1 1

1 1

n n
n

n n

WHT WHT
WHT

WHT WHT
 

 

 
   

 and

WHT1 = 1. The values contained in Figure 11 are the negatives of these values.

Figure 10. Changes in Values of FWT Elements Caused by a 0 to 1 Transition in a
Function’s TT.

 28

Figure 11. Changes in Values of FWT Elements Caused by a 1 to 0 Transition in a
Function’s TT.

E. ALGORITHM FOR FINDING BENT FUNCTION GIVEN NEARLY BENT
FUNCTION

1. Nonlinearity Five to Nonlinearity Six

Consider a four-variable function f with the following TT:

TTf = 0 0 0 1 0 1 0 1 0 0 0 1 1 1 1 0

The function f has a nonlinearity of five and its FWT is:

FWT = 7 3 1 1 3 1 3 3 1 3 1 1 1 3 1 1

As previously discussed, a change in exactly one bit of the TT of f will result in a

bent function. For a four-variable function, there are 16 bits in the TT that could

potentially be changed. However, it is known that four-variable bent functions all have

weight of six or ten. Since f has a weight of seven, we know that a 1 in its TT must be

complemented to produce a bent function. Thus, the number of bits that could potentially

be changed in order to produce a bent function is seven. This significantly reduces the

 29

number of bits that would potentially need to be tested in a trial-and-error technique.

However, for functions with higher values of n, this can still result in a large number of

bits to be tested.

A method for reducing the number of bits even further is to consider the contents

of the FWT of f. Note that the FWT (except FWT0) contains values 3 , 1 , 1, and 3.

This is the set of values that are potentially present in the FWT of a function with

nonlinearity of five. Recall that a bent function’s FWT will only contain values 2 and 2

and a function with nonlinearity of four will potentially have values 4 , 2 , 0, 2, and 4.

If the incorrect TT bit is chosen to be complemented, then one or more of the FWT

components with values 3 or 3 will become 4 or 4, respectively. This would produce a

function with a lower nonlinearity. For example, consider if we (incorrectly) choose to

complement the first 1 bit in the TT. This bit is referred to as TT3 in Figures 10 and 11.

From Figure 11, it can be seen that changing TT3 from a 1 to a 0 will decrease the value

of FWT4 by one and will increase the value of FWT13 by one. This would make FWT4

equal to 4 and FWT13 equal to 4. This indicates a function with a nonlinearity of four

without having to recalculate the nonlinearity of the new function that was produced. The

TT and FWT resulting from this incorrect transition are:

 Tg = 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 (2)

and

 WT = 6 2 0 0 4 0 2 2 2 2 0 0 0 4 2 2 . (3)

As another example, consider if we (correctly) choose to complement TT5. Doing

so will cause all FWT values that had been 3 to become 2 and all FWT values that had

been 3 to become 2. This produces a bent function with nonlinearity of six. The TT and

FWT resulting from this correct transition are:

 Th = 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 (4)

and

 WT = 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 . (5)

 30

A flowchart that describes this algorithm is shown in Figure 12.

Figure 12. Algorithm for Finding Bent Function Given Four-Variable Function With
Nonlinearity of Five.

 31

2. Nonlinearity Four to Nonlinearity Five

The algorithm for altering a function with nonlinearity four to produce a function

with nonlinearity five is quite similar to the algorithm just described. The major

difference in this case is that for functions with certain weights we are not forced to

complement a 1 or complement a 0. For example, a function with weight of four must

have its weight increased by one by complementing a 0 bit. Conversely, a function with

weight of twelve must have its weight decreased by one by complementing a 1 bit. For

functions with weight of six, eight, or ten, we can either decrease or increase the weight

to produce a function with nonlinearity of five.

Consider a function f with nonlinearity of four and the following TT and FWT:

 Tf = 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0; (6)

 WT = 6 0 0 2 4 2 2 0 2 0 0 2 0 2 2 4 . (7)

Note that the FWT of this function contains the proper values for a function with

nonlinearity of four. In order to produce a function with nonlinearity of five, a TT

transition that forces both of the FWT values of 4 to become 3 is necessary. Because

the function has weight of six, we can either complement a 0 bit or a 1 bit. Arbitrarily

choosing to complement a 0 bit, we see from Figure 11 that complementing TT0

increases both FWT5 and FWT15 (and actually, changing TT0 from 0 to 1 will increase

every element of the FWT). Choosing to complement this bit produces a function g of

nonlinearity five with the following TT and FWT:

 Tg = 1 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0; (8)

 WT = 7 1 1 3 3 1 1 1 1 1 1 3 1 3 3 3 . (9)

A flowchart that describes this algorithm is shown in Figure 13. The output of this

algorithm could then be the input to the algorithm shown in Figure 12, which would

produce a bent function.

The algorithm for altering any function with nonlinearity of less than four in order

to produce a function with greater nonlinearity is similar to this algorithm.

 32

Figure 13. Algorithm for Finding a Function With Nonlinearity of Five Given a Four-
Variable Function With Nonlinearity of Four.

 33

V. COMPUTATION AND ANALYSIS

A. IMPLEMENTATION OF FWT ON SRC-6

1. About the SRC-6

The SRC-6 reconfigurable computer in Spanagel Hall at the Naval Postgraduate

School is the one of the computational tools used for this thesis. The SRC-6 allows the

user greater flexibility to control compilation than a PC. It is composed of two PCs, each

with a Pentium IV microprocessor, five Multi-Adaptive Processing (MAP) boards each

containing three Xilinx Virtex-2 XC2V6000 FPGAs, two for computing and one for

control as well, as well as 24 MB of On Board Memory (OBM). A high-bar switch

connects these components. These boards are connected by a high-bar switch. The SRC-6

has four 8 GB banks of common memory. The SNAP port can send data from the

microprocessor to the MAP at a maximum speed of 1400 MB/s. A diagram of the SRC-6

is shown in Figure 14.

Figure 14. Layout of the SRC-6 (From [15]).

 34

Several files are required to execute a program on the SRC-6. The SRC-6 can

compile code that can be either executed on the Intel processor or on the MAP. The files

are linked together in order to create a single executable. Files that are Intel targeted are

compiled to an .o file and files that are targeted to the MAP compile using the Map C

Compiler (MCC). The file main.c is written in C and calls a subroutine file which does

the bulk of the computation. The file main.c is typically used to format and display the

output and sends inputs to the subroutine. The file subr.mc is the subroutine that main.c

calls. It is also written in C and runs on the MAP. The subroutine subr.mc can call built-

in or user-created macros. Local memory and On Board Memory (OBM) are used for

data storage. The SRC-6 contains six OBM banks. Each OBM bank is capable of storing

523,776 64-bit words. The SRC-6 FPGA contains 144 Block RAM (BRAM) units. Each

BRAM unit is capable of storing 2048 bytes. BRAM units can conduct a read and a write

simultaneously.

The user can define macros on the SRC-6. Macros are written using VERILOG or

VHDL and define the circuits generated on the FPGA. The macro is the module that

performs the desired computations, and it can be called millions of times by the

subroutine. Users can pipeline the macro so that it can perform one computation each

clock cycle. This significantly boosts throughput when compared to a PC. This is usually

where the major computations occur. The macro can be called millions of times in the

subroutine. It can be pipelined to increase throughput, a major advantage over a PC.

Macros require several files to operate: a blk.v file that acts as a black box and specifies

inputs and outputs of the macro and an info file that describes the characteristics of the

inputs and outputs as well as the characteristics of the macro.

2. Use of the SRC-6

It was exceptionally useful utilizing the SRC-6 for computing the nonlinearity of

millions of functions. The subroutine used a counter in order to exhaustively test all

functions for a given n. Each function generated by the counter was sent to the macro as

an input to be tested. The function was tested for its nonlinearity by utilizing its FWT.

 35

The values of functions’ nonlinearities were sent back to the subroutine and stored in a

histogram. The histogram counted the number of functions with each nonlinearity.

In addition to exhaustively computing the nonlinearities of functions by using the

FWT, the nonlinearities were also computed separately by an implementation of the sieve

technique. This was done so as to obtain a comparison against a benchmark in order to

ascertain the feasibility of computing the FWT on the SRC-6.

3. Limitations of the SRC-6

The primary limitation of the SRC-6 is the speed of its FPGA. The SRC-6 runs at

100 MHz, so a limit of 100,000,000 functions can be tested each second. Due to this, it is

impractical to exhaustively test all function with more than five variables. Computing the

nonlinearity of every six variable function, for example, would take about
62

112
1.85 10 sec 5,845

100

functions
x years

MHz
  . Due to this limitation, only limited numbers

of computations were performed for six-variable functions.

Another limitation of the SRC-6 is the inability to compile designs that require

more than 10 ns between clock cycles. This can occur when a program requires extensive

computations or it is written inefficiently. This can be encountered sometimes in Verilog

while using behavioral code. Behavioral code involves the use of loops, conditionals, and

calls to functions. A more efficient method of coding on the FPGA is to use structural

code. Structural code involves the use of wire connections that perform simple operations

synchronized with the edge of a clock pulse or the change of an input quantity. Structural

code includes the use of registers, which can be used to store and recall information on a

clock pulse. This allows pipelining code, which can significantly lower the time between

cycles and allow a program to compile properly.

A final limitation of the SRC-6 is that its FPGA has a limited amount of space

available for hardware design. With more variables in a function, the larger the circuit

required to compute its nonlinearity becomes. As n increases to approximately nine or

ten, the FPGA’s resources are no longer sufficient to construct the specified circuit. It is

 36

conceivable to use a second FPGA to add the required resources to construct circuits for

high values of n, but this has not been explored.

B. RESULTS AND ANALYSIS OF IMPLEMENTATION OF FWT ON THE
SRC-6

1. Nonlinearity for n = 4

For the 216 four-variable functions, the nonlinearities were computed for each of

these using the FWT method, a pipelined FWT method, as well as the sieve method for a

comparison. A summary of the relevant performance metric is shown in Table 7. All

methods were able to be compiled on the SRC-6, as their frequencies were all greater

than 100 MHz. The methods, as expected for a small value of n, all use a similarly small

amount of the FPGA’s resources. It is of note that the pipelined FWT method executes

most quickly, with a frequency of 110 MHz. The distribution of nonlinearities obtained

with the FWT methods is shown in Figure 15 and precisely matches the distribution

shown in Figure 9, confirming that the FWT method correctly computed the nonlinearity

for all functions.

Table 7. Comparison of Methods for n = 4.

 Sieve Method FWT Method Pipelined FWT

Clock Cycles 65,727 65,737 65,737

Latency (clock

cycles)

6 16 18

LUTs Used (%) 3,717 (4%) 3,923 (4%) 4,012 (4%)

Frequency (MHz) 101.0 100.2 110.0

 37

Figure 15. Distribution of Functions With Four Variables by Nonlinearity.

2. Nonlinearity for n = 5

For the 232 five-variable functions, the nonlinearities were computed for each

using the FWT method, a pipelined FWT method, as well as the sieve method for a

comparison. A summary of the relevant performance metric is shown in Table 8. The

sieve method and the pipelined FWT were able to be compiled and run on the SRC-6, as

their frequencies were greater than 100 MHz. Note that in this case, the sieve method

runs faster than the pipelined FWT. In addition, the latency of the pipelined FWT is much

higher than the latency of the sieve method. This is conjectured to be due to the circuit

having exponential complexity in n, where complexity is shown by the number of LUTs

used. The distribution of nonlinearities for n = 5 is shown in Figure 16. Approximately

0.64% of the functions have maximum nonlinearity, which is about half of the proportion

of bent functions that exist for n = 4.

 38

Table 8. Comparison of Methods for n = 5.

 Sieve Method FWT Method Pipelined FWT

Clock Cycles 4,294,967,488 4,294,967,513 4,294,967,513

Latency (clock

cycles)

7 32 34

LUTs Used (%) 3969 (4%) 5,134 (5%) 5,511 (6%)

Frequency (MHz) 111.8 78.6 100.0

Figure 16. Distribution of Functions With Five Variables by Nonlinearity.

3. Nonlinearity for n = 6

Since it was not possible to compute the nonlinearities of all 264 functions with six

variables, we rather computed the nonlinearity for a subset of 232 of them. For these

functions, the nonlinearities were computed for each using the FWT method, a pipelined

FWT method, as well as the sieve method for a comparison. A summary of the relevant

 39

performance metric is shown in Table 9. The sieve method and the pipelined FWT were

able to be compiled and run on the SRC-6, as their frequencies were greater than 100

MHz. The non-pipelined FWT method suffered a sharp drop-off in frequency. In

addition, the latency of the pipelined FWT is much higher than the latency of the sieve

method and seems to be growing exponentially.

Table 9. Comparison of Methods for n = 6.

 Sieve Method FWT Method Pipelined FWT

Clock Cycles 4,294,967,489 4,294,967,545 4,294,967,545

Latency (clock

cycles)

8 64 67

LUTs Used (%) 4,486 (5%) 8,615 (9%) 9,269 (10%)

Frequency (MHz) 102.1 48.3 100.1

4. Trends of Performance Metrics

The trends of the frequency and resource usage for the nonlinearity computation

methods are shown for increasing n in Figure 17. It becomes clear that the FWT method,

without pipelining, will not compile for n greater than five. A pipelined version of the

FWT method, however, performs much better. The pipelined FWT method and the sieve

method share roughly equivalent execution frequencies up to about an n of ten.

 40

Figure 17. Trend of Frequency for Nonlinearity Computation Methods for Various n.

The total number of four-input Lookup Tables (LUTs) used is shown in Figure

18. A LUT is the key type of data structure used in FPGAs. An n-bit LUT can encode any

n-bit Boolean function by modeling it as a truth table. LUTs are, therefore, a very

efficient method for encoding Boolean logic functions.

One aspect where the FWT method is decidedly less desirable than the sieve

method is in the amount of resources it used. The number of LUTs used by the sieve

method increased almost linearly with n. The number of LUTs used by the FWT method,

on the other hand, increased roughly exponentially with n. The FPGA in the SRC-6

contains 88,192 four-input LUTs. The amount of resources available on the SRC-6 would

allow use of the SRC-6 method for n up to nine. It would be conceivable to use a second

FPGA for higher n, but this has not been attempted.

 41

Figure 18. Trend of Resource Utilization for Nonlinearity Computation Methods for
Various n.

C. IMPLEMENTATION OF ALGORITHM ON PC USING MATLAB

MATLAB was used to write code to implement the algorithm described in

Chapter IV. This algorithm was used for the n = 4 case, but can be expanded for use with

higher n. The algorithm takes a TT and n as inputs and returns the TT of a nearby

function with higher nonlinearity if one exists. The range of input TT accepted in this

implementation was limited to those with a nonlinearity of three or greater. This is

because of the ease in finding functions with nonlinearity four or greater, as discussed in

Chapter IV.

This algorithm was performed on all functions with a nonlinearity of three, four,

five, and six. It always chose a bit that, when complemented, produced a nearby function

with greater nonlinearity if such a function existed. An example of the output from this

implementation is shown in Figure 19.

 42

Figure 19. Sample Output of Algorithm That Discovers Nearby Bent Functions.

The algorithm was applied to every four-variable function. Input functions with

nonlinearity less than three were ignored. The inputs were filtered so that the algorithm

was performed separately on functions with starting nonlinearities of three, four, and five.

For example, the algorithm was applied to all 17,920 functions with a nonlinearity

of three. This produced a certain number of functions with a nonlinearity of four, on

which the algorithm was applied again. This produced a certain number of functions with

a nonlinearity of five, on which the algorithm was applied again. This produced a certain

number of bent functions.

After this, the algorithm was applied to all 28,000 functions with a nonlinearity of

four. This produced a certain number of functions with a nonlinearity of five on which

the algorithm was applied once more. This then produced bent functions.

 43

Finally, the algorithm was applied to all 14,336 functions with a nonlinearity of

five. This produced bent functions after the first iteration.

The results for each starting nonlinearity are shown in Table 10.

Table 10. Summary of Algorithm Results for n = 4.

Input Function

Nonlinearity

NL = 3 NL = 4 NL = 5

Functions Tested 17,920 28,000 14,336

Successes 17,920 26,880 14,336

Failures 0 1,120 0

Unique Higher

Nonlinearity

Functions Produced

NL = 4 11,900 N/A N/A

NL = 5 6,107 11,103 N/A

NL = 6 676 896 896

Input functions with a nonlinearity of five always produced a bent function. In

addition, every unique bent function was produced this way. This result was encouraging

and suggested that not every function with a nonlinearity of five needs to be found to find

every bent function.

Input functions with a nonlinearity of four did not always produce a function with

higher nonlinearity. It was discovered that there are certain functions where one cannot

find a nearby function with higher nonlinearity. For example, the function with

1111000000000000fTT  has a nonlinearity of four and weight of four. By inspection of

 44

Figure 9, we know that complementing a 1 bit from its TT will decrease its weight and

nonlinearity to three. However, it turns out that complementing any of its 0 bits will

produce a function with a weight of five and a nonlinearity of three.

There were 1,120 input functions with a nonlinearity of four for which it was not

possible to find a nearby function with nonlinearity of five. Every other input function

with a nonlinearity of four, however, produced a nearby function with a nonlinearity of

five. This produced a total of 11,103 unique functions with a nonlinearity of five. From

those unique functions, the algorithm was then able to find all 896 bent functions. It is

particularly noteworthy that not all functions with a nonlinearity of five need to be

discovered in order to discover all the bent functions.

Input functions with a nonlinearity of three always produced a function with a

nonlinearity of four. This produced a total of 11,900 unique functions with a nonlinearity

of four. From the functions produced that had a nonlinearity of four, the algorithm was

able to produce 6,107 unique functions with a nonlinearity of five. From these functions,

676 unique bent functions were produced.

 45

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

An SRC-6 implementation of the FWT method for computing the nonlinearity of

all functions of a given n was accomplished in this thesis. This method had an execution

frequency that was comparable with the method by which the Hamming distance from

each affine function is computed and the minimum Hamming distance is taken. As with

other methods that exhaustively compute the nonlinearity of functions in order to

discover bent functions, the feasibility of this method was limited by the number of

variables in the input functions. The FWT method requires more 4-input LUTs than are

available one FPGA on the SRC-6 once n ≥ 10.

An algorithm that uses information from the FWT of an input function to produce

a “nearby” function with higher linearity was also accomplished in this thesis. When a

nearby function with higher nonlinearity exists, the algorithm always is able to find it.

Instead of having to compute the nonlinearity of 22
n

functions in order to find every bent

function, it was possible to apply the algorithm to a smaller set of functions and find

every bent function. For example, for n = 4 there are 28,000 functions with a nonlinearity

of four. This represents only 43% of all four-variable functions. From this smaller set of

functions the algorithm was able to produce every bent function.

Included in the Appendices are several sets of code that may aid those who chose

to continue this research in the future.

B. RECOMMENDATIONS

There are several ideas that may improve or expand upon the work done in this

thesis. There are several options available that may enhance the effectiveness of the SRC-

6. The SRC-6 contains two programmable FPGAs on each MAP. Only one FPGA was

used in the implementation of the code in this thesis. Using the second FPGA may allow

the computation of nonlinearities of functions with n ≥ 10. A potential pitfall is that only

one 64-bit value can be passed to and from an FPGA at a time. The TT of a 12-variable

 46

function contains 4096 bits, thus it would be necessary to pass 64 different 64-bit values

between FPGAs to send the TT to the second FPGA. Since the FWT contains values

other than 1 and 0, it contains many more bits than the TT. This would be even more

difficult to pass between two FPGAs. This could potentially slow pipelining of the FWT

method substantially.

Another idea that may provide useful results would be to use the algorithm

developed in this thesis in conjunction with previous research. Specifically, Shafer’s

work that identified groups of Boolean functions that were rich in bent functions [12]. It

was demonstrated in this thesis that it is possible to find all bent functions by using a

subset of all functions. It may be possible to find all bent functions for higher n by

adapting the algorithm for higher n and applying it to certain sets of functions with

specific degree, rotational symmetry, homogeneity, or other criteria.

 47

APPENDIX A. SRC-6 CODE

The following is the code used to determine the nonlinearity of Boolean functions

on the SRC-6. There are six major files required to run code on the SRC-6. They are

Makefile, main.c, subr.mc, info, blk.v, and the macro file. For the sieve method code, the

macro file is called nonlin.v. For the FWT code, the macro file is called FWTNL.v.

A1. COMPUTATION OF NONLINEARITY USING SIEVE METHOD FOR
N=4

1. main.c

/***/
/* */
/* main.c - C program to test an SRC-6E implementation of Ones_Count */
/* */
/* Author: Jon T. Butler */
/* Created: November 25, 2007 */
/* */
/* */
/* Modifed by: Timothy O'Dowd */
/* Last modified: October 19, 2010 */
/* */
/* Description: This program calls an SRC-6 subrouting to compute */
/* the nonlinearity an n-variable function. It computes a histo- */
/* gram of the nonlinearities over all n-variable functions. */
/* It can do this for 1 <= n <= 5. n=6 takes 11,000 years. */
/* */
/* */
/***/

#include <map.h>
#include <stdlib.h>

void subr (int64_t*, int64_t*, int);

int main (int argc, char *argv[]) {
 int mapnum = 0;
 int64_t i, n = 4;
 int64_t time_clk;
 int64_t *hist;

// Allocate array of hist values.
 hist = (int64_t *) malloc (64*sizeof (int64_t));

 map_allocate (1);

// Call subroutine subr.mc on the MAP.
 subr (hist, &time_clk, mapnum);

// Print out the number of clocks.
printf ("%lld clocks\n", time_clk);

// Print title of data. */
 printf("\nNonlin Number n = %lld\n",n);

// For each value of nonlinearity, print out the number of n-variable

 48

// functions with that nonlinearity.
 for (i = 0; i <= (1<<n); i++){
 printf(" %lld %lld \n",i, hist[i]);
 }//for (i = 0; i <= (1<<2); i++){

 map_free (1);

 exit(0);

 }//int main (int argc, char *argv[]) {

2. subr.mc

/***/
/* */
/* subr.mc - MAP C subroutine to compute the nonlinearity of functions. */
/* */
/* Author: Jon T. Butler */
/* Created: November 25, 2007 */
/* */
/* */
/* Modified by: Timothy O'Dowd */
/* Last modified: October 19, 2010 */
/* */
/* Description: This program calls an SRC-6 macro that computes */
/* the nonlinearity an n-variable function. It computes a histo- */
/* gram of the nonlinearities over all n-variable functions. */
/* It can do this for 1 <= n <= 5. n=6 takes 11,000 years. */
/* */
/* */
/***/

#include <libmap.h>

void subr (int64_t histogram[], int64_t *time, int mapnum) {

// Declare an OBM bank in SRC-6 to store the histogram of nonlinearities
// for n-variable functions. For n-variable functions, there are 2^n+1
// potential nonlinearities. When n=5, there are 33 nonlinearities.
 OBM_BANK_A (Hist, int64_t, 64)
//
 int64_t t0, t1;
 int64_t sel, i, N, n = 4;
 int64_t my64bit_in;
 int64_t my64bit_out;
 int64_t Hist0[64], Hist1[64], Hist2[64], Hist3[64];

 read_timer(&t0);
//
 for (i = 0; i < 64; i++){
 Hist0[i] = 0;
 Hist1[i] = 0;
 Hist2[i] = 0;
 Hist3[i] = 0;
 }
//
 if (n < 5)
 N = 1<<(1<<n); //Form N = 2^(2^n);
 else
 N = 0x100000000;
//
#pragma loop noloop_dep //To avoid loop slowdown, separate histogram into
 // four separate histograms.

 for (i = 0; i < N; i++){

 49

 my64bit_in = i;
 my_operator (my64bit_in, &my64bit_out);
 sel = i & 3;
 if (sel == 0) Hist0[my64bit_out]++;
 if (sel == 1) Hist1[my64bit_out]++;
 if (sel == 2) Hist2[my64bit_out]++;
 if (sel == 3) Hist3[my64bit_out]++;
 }//for (i = 0; i < N; i++){
//
 for (i = 0; i < 64; i++)
 Hist[i] = Hist0[i] + Hist1[i] + Hist2[i] + Hist3[i];

 read_timer(&t1);

 *time = (t1 - t0);

// Return histogram to main.c
 DMA_CPU (OBM2CM, Hist, MAP_OBM_stripe(1,"A"), histogram, 1, 64*sizeof(int64_t),
0);
 wait_DMA (0);

}//subr (int64_t hist[], int64_t *time, int mapnum) {

3. Makefile

$Id: Makefile.template,v 1.13 2005/04/12 19:18:30 jls Exp $

Copyright 2003 SRC Computers, Inc. All Rights Reserved.

Manufactured in the United States of America.

SRC Computers, Inc.
4240 N Nevada Avenue
Colorado Springs, CO 80907
(v) (719) 262-0213
(f) (719) 262-0223

No permission has been granted to distribute this software
without the express permission of SRC Computers, Inc.

This program is distributed WITHOUT ANY WARRANTY OF ANY KIND.

User defines FILES, MAPFILES, and BIN here

FILES = main.c

MAPFILES = subr.mc

BIN = main

Multi chip info provided here
(Leave commented out if not used)

#PRIMARY = <primary file 1> <primary file 2>

#SECONDARY = <secondary file 1> <secondary file 2>

#CHIP2 = <file to compile to user chip 2>

#-----------------------------------
User defined directory of code routines
that are to be inlined

 50

#------------------------------------

#INLINEDIR =

User defined macros info supplied here

(Leave commented out if not used)

MACROS = my_macro/nonlin.v
MY_BLKBOX = my_macro/blk.v
MY_NGO_DIR = my_macro
MY_INFO = my_macro/info

Floating point macros selection

#FPMODE = SRC_IEEE_V1 # Default SRC version IEEE
#FPMODE = SRC_IEEE_V2 # Size reduced SRC IEEE with
 # special rounding mode

User supplied MCC and MFTN flags

MY_MCCFLAGS = -v -keep
MY_MFTNFLAGS = -v

User supplied flags for C & Fortran compilers

CC = gcc # icc for Intel cc for Gnu
FC = ifort # ifort for Intel f77 for Gnu
#LD = ifort -nofor_main # for mixed C and Fortran, main in C
#LD = ifort # for Fortran or C/Fortran mixed, main in Fortran
LD = gcc # for C codes

MY_CFLAGS =
MY_FFLAGS =
MY_LDFLAGS = # Flags to include libs if needed

VCS simulation settings
(Set as needed, otherwise just leave commented out)

#USEVCS = yes # YES or yes to use vcs instead of vcsi
#VCSDUMP = yes # YES or yes to generate vcd+ trace dump

MODELSIM simulation settings
(Set as needed, otherwise just leave commented out)

#USEMDL = yes # YES or yes to use modelsim instead of vcs/vcsi
#USEMDLGUI = yes # YES or yes to use modelsim GUI interface
#MDLDUMP = yes # YES or yes to generate vcd trace dump

No modifications are required below

MAKIN ?= $(MC_ROOT)/opt/srcci/comp/lib/AppRules.make
include $(MAKIN)

 51

4. blk.v

/***/
/* */
/* blk.v - black-box file that specifies input and output */
/* */
/* Author: Timothy O'Dowd */
/* Created: July 1, 2010 */
/* Last modified: October 3, 2010 */
/* */
/***/

module nonlin(TT_p,nl_p,CLK);
 input [63:0] TT_p;
 output [63:0] nl_p;
 input CLK;
endmodule

5. Info File

//***/
//* */
//* info - info file to specify the input and output of the macro. */
//* */
//* Author: Jon T. Butler */
//* Created: November 25, 2007 */
//* */
//* Modified by: Timothy O'Dowd */
//* Last modified: October 3, 2010 */
//* */
//***/

BEGIN_DEF "my_operator" //Name used in .mc file to call macro.
 MACRO = "nonlin"; //Macro name.
 STATEFUL = NO;
 EXTERNAL = NO;
 PIPELINED = YES; //n = 2 3 4 5 6 7
 LATENCY = 8; //LATENCY = 4 5 6 7 8 9

 INPUTS = 1:
 I0 = INT 64 BITS (TT_p[63:0]) // Input TT_p explicit input

 ;

 OUTPUTS = 1:
 O0 = INT 64 BITS (nl_p[63:0]) // Output nl_p explicit output

 ;
 IN_SIGNAL : 1 BITS "CLK" = "CLOCK";

 DEBUG_HEADER = #
 void my_operator__dbg (int64_t TT_p, int64_t *nl_p);
 #;
 DEBUG_FUNC = #
 void my_operator__dbg (int64_t TT_p, int64_t *nl_p){
 *nl_p = 6;
 }
 #;
END_DEF

 52

6. nonlin.v

///
module nl_mapper (TT, OUT);
//---
// nl_mapper - Verilog code to convert the truth table TT of a given function f into a
// vector, OUT of 2^(n+1) functions - each with 2^n bits - that are the
// distance vectors between f and the 2^(n+1) affine functions. These are
// then applied to a ones_count circuit to count the number of 1's, which
// are compared to find the minimum distance from f to an affine function.
//
// Created: November 6, 2007
// Last Modified: November 26, 2007
// Author: Jon T. Butler
//
// Inputs: TT //Truth table of given function, f.
// Outputs: OUT //Vector of 2^(n+1) distances between f and an affine function/
//
//---

//;
parameter n = 4; // n = the number of variables.
localparam N = 2**n;
localparam NN = 2**(n+1);

input [N-1 : 0] TT;
output [N*NN - 1 : 0] OUT;
reg [N*NN - 1 : 0] OUT;
reg [n : 0] Y;
reg [n-1 : 0] X;
reg temp;
integer i,j,k;

always @(TT)
 for (i = 0; i < NN; i = i + 1) //Enumerates the affine functions.
 begin
 Y = i;
 for (j = 0; j < N; j = j + 1) //Enumerates the truth table entries.
 begin
 X = j;
 temp = 0;
 for (k = 0; k < n; k = k + 1) //Exclusive OR the affine function with f.
 temp = temp ^ (X[k] & Y[k]);
 OUT[Y*N + X] = temp ^ TT[X] ^ Y[n];
 end
 end
//
// In the innermost for loop, we are exclusive-ORing across the variables involved
// in the affine function and the function value itself - TT[X]. Here, Y[k]
// determines whether a particular variable X[k] is involved (Y[k] = 1) or not (= 0).
// temp is the running exclusive OR.
// Y[NN-1] determines whether the affine function is linear (Y[NN-1]=0) or the complement
// of a linear function (=1).

endmodule

///
module min(IN, OUT, CLK);
//---
// min.v - A program to compare 2^(n+1) n+1-bit binary values and to deliver the
// smallest to the output. This can be configured in two ways
// 1. Completely pipelined tree
// 2. Completely combinational tree (except for a register at the output)
//
// In the case of 1. this runs a 209.6 MHz. for all values of n. It was
// tried for n up to 8. At n=8, it takes more than two minutes to compile.

 53

//
// In the case of 2. the Freq. value is as follows
//
// n Freq. (MHz.) Total Runtime
// 2 111.9
// 3 106.1
// 4 73.6
// 5 70.4
// 6 61.2
// 7 53.2 2 min. 45 secs.
// 8 46.7 7 min. 57 secs.
//
// To have a 1. Completely pipelined tree, use <= in three places
// 1. curr_IN[0] <= IN;
//
// 2. if(curr_IN[j-1][((2*i + 2)*nn-1)-:nn] <
// curr_IN[j-1][((2*i + 1)*nn-1)-:nn])
// curr_IN[j][((i + 1)*nn-1)-:nn] <=
// curr_IN[j-1][((2*i + 2)*nn-1)-:nn];
//
// 3. else curr_IN[j][((i + 1)*nn-1)-:nn] <=
// curr_IN[j-1][((2*i + 1)*nn-1)-:nn];
//
// To have a 2. Completely combinational tree, use <= in three places
// 1. curr_IN[0] = IN;
//
// 2. if(curr_IN[j-1][((2*i + 2)*nn-1)-:nn] <
// curr_IN[j-1][((2*i + 1)*nn-1)-:nn])
// curr_IN[j][((i + 1)*nn-1)-:nn] =
// curr_IN[j-1][((2*i + 2)*nn-1)-:nn];
//
// 3. else curr_IN[j][((i + 1)*nn-1)-:nn] =
// curr_IN[j-1][((2*i + 1)*nn-1)-:nn];
//
//
// NOTE: This produces many warnings that you have unused elements of a
// matrix.
//
//
// Created: November 7, 2007
// Last Modified: November 18, 2007
// Author: Jon T. Butler
//
// Inputs: IN
// Outputs: OUT
//
//---
//
// NOTE: This program is the second time, I have used matrices. For example, curr_min
// is the current minimum value. Using matrices provides control on the structure
// of the circuit produced.

 parameter n = 4; // Number of variables.
 localparam nn = n + 1; // Number of bits in the numbers to be compared.
 localparam N = 2**nn; // Number of numbers to be compared. It is the
 // number of affine functions.
 output [n:0] OUT; // OUT is the smallest of the n+1-bit inputs
 input [nn*N-1:0] IN; // IN is an array of 2^(n+1) (n+1)-bit numbers
 reg [nn*N-1:0] curr_IN [nn:0] ;
 input CLK;

 integer i,j;

 always @(posedge CLK)
 begin
 curr_IN[0] <= IN;

 for(j=1; j<=nn; j=j+1) // Enumerate a level in the comparison tree.
 begin

 54

 for(i=0; i<2**(n+1-j); i=i+1) //Enumerate a position in the current
 //level.
 begin: increment
 if (j%3==0)
 if(curr_IN[j-1][((2*i + 2)*nn-1)-:nn] <
 curr_IN[j-1][((2*i + 1)*nn-1)-:nn]) curr_IN[j][((i + 1)*nn-1)-:nn]
 <= curr_IN[j-1][((2*i + 2)*nn-1)-:nn];
 else curr_IN[j][((i + 1)*nn-1)-:nn] <= curr_IN[j-1][((2*i + 1)*nn-
 1)-:nn];
 else
 if(curr_IN[j-1][((2*i + 2)*nn-1)-:nn] < curr_IN[j-1][((2*i + 1)*nn-
 1)-:nn]) curr_IN[j][((i + 1)*nn-1)-:nn] <= curr_IN[j-1][((2*i +
 2)*nn-1)-:nn];
 else curr_IN[j][((i + 1)*nn-1)-:nn] <= curr_IN[j-1][((2*i + 1)*nn-
 1)-:nn];
 end
 end
 end

 assign OUT = curr_IN[nn][(nn-1)-:nn];
 // curr_IN[j][((i + 1)*nn-1)-:nn] for j=nn and i=0.

endmodule

///
module Ones_Count (TT, CLK, Count);
//---
// Ones_Count.v - A program to count the number of 1's in HD (Hamming Distance),
// producing that count at Count. Note that this version of
// Ones_Count.v uses a for loop within an always procedural block.
//
// Created: October 29, 2007
// Last Modified: October 29, 2007
// Author: Jon T. Butler
//
// Inputs: TT
// Outputs: Count
//
//
//---

// ; // n Est. Freq. Req. Freq. <= Synplify Pro derived values
// 6 105.4 100
// 7 84.3 100
// 8 46.1 100
 parameter n = 4;
 localparam N = 2**n;
 input [N-1:0] TT;
 input CLK;
 output [n:0] Count;
 reg [n:0] Count;
 integer i;

 always @(posedge CLK)
 begin
 Count = 0;
 for(i=0; i<N; i=i+1)
 begin: increment
 if(TT[i]) Count = Count+1;
 end
 end
endmodule

///
///
module nonlin(TT_p,nl_p,CLK);
//---

 55

// nonlin - Verilog code to convert the truth table TT of a given function f into a
// vector, nl, that is the minimum distance between f and any affine function
// on n variables.
// This instantiates nl_mapper, a module that converts TT of f into OUT a
// (large) vector that is the composite of the distance vectors of f from all
// affine functions.
//
// Created: November 12, 2007
// Last Modified: November 25, 2007
// Author: Jon T. Butler
//
// Inputs: TT //Truth table of given function, f.
// Outputs: nl //The nonlinearity of f (minimum distance between f and an affine
// function).
//
//---
//
// Data
//
// n Freq. Total Comp. TT #affine Prod. #Pipeline
// MHz. LUTs Time Size Functions Stages
// 1 209.6 4 35s 2 4 8 3
// 2 209.6 35 41s 4 8 32 4
// 3 173.7 143 44s 8 16 128 5
// 4 101.3 892 1m 2s 16 32 512 6
// 5 100.2 2107 4m 42s 32 64 2048 7
// 6 It will take 11,000 years to enumerate all 6-variable functions.

parameter n = 4; // n = the number of variables.
localparam N = 2**n; // N = 2^n = number of entries in truth table of an n-variable
 //function.
localparam NN = 2**(n+1); // NN = number of affine functions.

defparam u1.n = n;
defparam u3.n = n;

input [63:0] TT_p;
output [63:0] nl_p;
wire [N-1 : 0] TT;
input CLK;
wire [n : 0] nl;
wire [NN*N-1:0] OUT;
wire [NN*n+(NN-1):0] IN; //An array of 2**(n+1) n+1 - bit binary vectors.

assign TT = TT_p[N-1:0];
nl_mapper u1 (TT,OUT);

genvar i;

generate
for (i = 0; i<NN; i=i+1)
 begin: Loop
// Ones_Count u2(OUT[(i+1)*N - 1:i*N],CLK,IN[(i+1)*n + i:i*n + i]);
// [NN*N - 1:(NN-1)*N] ... [3*N - 1:2*N] [2*N - 1:N] [N - 1:0]
 wire [n : 0] Count;
// defparam u2.n = n;
 Ones_Count u2 (OUT[(i+1)*N - 1:i*N],CLK,Count);
// [NN*N - 1:(NN-1)*N] ... [3*N - 1:2*N] [2*N - 1:N] [N - 1:0]
 assign IN[(i+1)*n + i:i*n + i] = Count;
// [(NN)*n+(NN-1):(NN-1)*n+(NN-1)] ... [3*n+2:2*n+2] [2*n+1:n+1] [n:0]
 end
endgenerate

min u3 (IN,nl,CLK);
assign nl_p = {{(63-n){1'b0}},nl};

endmodule

 56

///
///

/////////////////////////////////// RESULTS /////////////////////////////////////

// n = 2 3 4 5
//
//nonlinearity
// 0 8 16 32 64
// 1 8 128 512 2048
// 2 0 112 3840 31744
// 3 0 0 17920 317440
// 4 0 0 28000 2301440
// 5 0 0 14336 12888064
// 6 0 0 896 57996288
// 7 0 0 0 215414784
// 8 0 0 0 647666880
// 9 0 0 0 1362452480
// 10 0 0 0 1412100096
// 11 0 0 0 556408832
// 12 0 0 0 27387136
// 13 0 0 0 0
///
///

A2. COMPUTATION OF NONLINEARITY USING FWT FOR N=4

1. main.c

/***/
/* */
/* main.c - C program to test an SRC-6E implementation of FWTNL */
/* */
/* Author: Jon T. Butler */
/* Created: November 25, 2007 */
/* */
/* Modified by: Timothy O'Dowd */
/* Last modified: October 4, 2010 */
/* */
/* Description: This program calls an SRC-6 subrouting to compute */
/* the nonlinearity an n-variable function. It computes a histo- */
/* gram of the nonlinearities over all n-variable functions. */
/* It can do this for 1 <= n <= 5. n=6 takes 11,000 years. */
/* */
/* */
/***/

#include <map.h>
#include <stdlib.h>

void subr (int64_t*, int64_t*, int);

int main (int argc, char *argv[]) {
 int mapnum = 0;
 int64_t i, n = 4;
 int64_t time_clk;
 int64_t *hist;

// Allocate array of hist values.
 hist = (int64_t *) malloc (64*sizeof (int64_t));

 map_allocate (1);

// Call subroutine subr.mc on the MAP.
 subr (hist, &time_clk, mapnum);

 57

// Print out the number of clocks.
printf ("%lld clocks\n", time_clk);

// Print title of data. */
 printf("\nNonlin Number n = %lld\n",n);

// For each value of nonlinearity, print out the number of n-variable
// functions with that nonlinearity.
 for (i = 0; i <= (1<<n); i++){
 printf(" %lld %lld \n",i, hist[i]);
 }//for (i = 0; i <= (1<<2); i++){

 map_free (1);

 exit(0);

 }//int main (int argc, char *argv[]) {

2. subr.mc

/***/
/* */
/* subr.mc - MAP C subroutine to compute the nonlinearity of functions. */
/* */
/* Author: Jon T. Butler */
/* Created: November 25, 2007 */
/* */
/* */
/* Modified by: Timothy O'Dowd */
/* Last modified: October 19, 2010 */
/* */
/* */
/* Description: This program calls an SRC-6 macro that computes */
/* the nonlinearity an n-variable function. It computes a histo- */
/* gram of the nonlinearities over all n-variable functions. */
/* It can do this for 1 <= n <= 5. n=6 takes 11,000 years. */
/* */
/* */
/***/

#include <libmap.h>

void subr (int64_t histogram[], int64_t *time, int mapnum) {

// Declare an OBM bank in SRC-6 to store the histogram of nonlinearities
// for n-variable functions. For n-variable functions, there are 2^n+1
// potential nonlinearities. When n=5, there are 33 nonlinearities.
 OBM_BANK_A (Hist, int64_t, 64)
//
 int64_t t0, t1;
 int64_t sel, i, N, n = 4;
 int64_t my64bit_in;
 int64_t my64bit_out;
 int64_t Hist0[64], Hist1[64], Hist2[64], Hist3[64];

 read_timer(&t0);
//
 for (i = 0; i < 64; i++){
 Hist0[i] = 0;
 Hist1[i] = 0;
 Hist2[i] = 0;
 Hist3[i] = 0;
 }

 58

//
 if (n < 5)
 N = 1<<(1<<n); //Form N = 2^(2^n);
 else
 N = 0x100000000;
//
#pragma loop noloop_dep //To avoid loop slowdown, separate histogram into
 // four separate histograms.
 for (i = 0; i < N; i++){
 my64bit_in = i;
 my_operator (my64bit_in, &my64bit_out);
 sel = i & 3;
 if (sel == 0) Hist0[my64bit_out]++;
 if (sel == 1) Hist1[my64bit_out]++;
 if (sel == 2) Hist2[my64bit_out]++;
 if (sel == 3) Hist3[my64bit_out]++;
 }//for (i = 0; i < N; i++){
//
 for (i = 0; i < 64; i++)
 Hist[i] = Hist0[i] + Hist1[i] + Hist2[i] + Hist3[i];

 read_timer(&t1);

 *time = (t1 - t0);

// Return histogram to main.c
 DMA_CPU (OBM2CM, Hist, MAP_OBM_stripe(1,"A"), histogram, 1, 64*sizeof(int64_t),
0);
 wait_DMA (0);

}//subr (int64_t hist[], int64_t *time, int mapnum) {

3. Makefile

$Id: Makefile.template,v 1.13 2005/04/12 19:18:30 jls Exp $

Copyright 2003 SRC Computers, Inc. All Rights Reserved.

Manufactured in the United States of America.

SRC Computers, Inc.
4240 N Nevada Avenue
Colorado Springs, CO 80907
(v) (719) 262-0213
(f) (719) 262-0223

No permission has been granted to distribute this software
without the express permission of SRC Computers, Inc.

This program is distributed WITHOUT ANY WARRANTY OF ANY KIND.

User defines FILES, MAPFILES, and BIN here

FILES = main.c

MAPFILES = subr.mc

BIN = main

Multi chip info provided here
(Leave commented out if not used)

 59

#PRIMARY = <primary file 1> <primary file 2>

#SECONDARY = <secondary file 1> <secondary file 2>

#CHIP2 = <file to compile to user chip 2>

#-----------------------------------
User defined directory of code routines
that are to be inlined
#------------------------------------

#INLINEDIR =

User defined macros info supplied here

(Leave commented out if not used)

MACROS = my_macro/FWTNL.v
MY_BLKBOX = my_macro/blk.v
MY_NGO_DIR = my_macro
MY_INFO = my_macro/info

Floating point macros selection

#FPMODE = SRC_IEEE_V1 # Default SRC version IEEE
#FPMODE = SRC_IEEE_V2 # Size reduced SRC IEEE with
 # special rounding mode

User supplied MCC and MFTN flags

MY_MCCFLAGS = -v -keep
MY_MFTNFLAGS = -v

User supplied flags for C & Fortran compilers

CC = gcc # icc for Intel cc for Gnu
FC = ifort # ifort for Intel f77 for Gnu
#LD = ifort -nofor_main # for mixed C and Fortran, main in C
#LD = ifort # for Fortran or C/Fortran mixed, main in Fortran
LD = gcc # for C codes

MY_CFLAGS =
MY_FFLAGS =
MY_LDFLAGS = # Flags to include libs if needed

VCS simulation settings
(Set as needed, otherwise just leave commented out)

#USEVCS = yes # YES or yes to use vcs instead of vcsi
#VCSDUMP = yes # YES or yes to generate vcd+ trace dump

MODELSIM simulation settings
(Set as needed, otherwise just leave commented out)

#USEMDL = yes # YES or yes to use modelsim instead of vcs/vcsi
#USEMDLGUI = yes # YES or yes to use modelsim GUI interface
#MDLDUMP = yes # YES or yes to generate vcd trace dump

No modifications are required below

MAKIN ?= $(MC_ROOT)/opt/srcci/comp/lib/AppRules.make
include $(MAKIN)

 60

4. blk.v

/***/
/* */
/* blk.v - black-box file that specifies input and output */
/* */
/* Author: Timothy O'Dowd */
/* Created: September 8, 2010 */
/* Last modified: September 8, 2010 */
/* */
/***/

module FWTNL (TT,minNL,CLK);
 input [63:0] TT;
 output [63:0] minNL;
 input CLK;
endmodule

5. Info File

//***/
//* */
//* info - info file to specify the input and output of the macro ... */
//* */
//* Author: Timothy O'Dowd */
//* Created: September 8, 2010 */
//* Last modified: September 8, 2010 */
//* */
//***/

BEGIN_DEF "my_operator" //Name used in .mc file to call macro.
 MACRO = "FWTNL"; //Macro name.
 STATEFUL = NO;
 EXTERNAL = NO;
 PIPELINED = YES; //n = 2 3 4 5 6 7
 LATENCY = 64; //LATENCY = 4 8 16 33 64 128

 INPUTS = 1:
 I0 = INT 64 BITS (TT[63:0]) // Input TT explicit input

 ;

 OUTPUTS = 1:
 O0 = INT 64 BITS (minNL[63:0]) // Output minNL explicit output

 ;
 IN_SIGNAL : 1 BITS "CLK" = "CLOCK";

 DEBUG_HEADER = #
 void my_operator__dbg (int64_t TT, int64_t *minNL);
 #;
 DEBUG_FUNC = #
 void my_operator__dbg (int64_t TT, int64_t *minNL){
 *minNL = 6;
 }
 #;
END_DEF

6. FWTNL.v

module FWT(CLK,TT,FRM);

 61

//---
// FWT Fast Walsh Transform - Pipelined Version)
//
// Created: January 24, 2010 (from FWT0)
// Author: Jon T. Butler
//
// Last Modified: September 5, 2010
// Modified by: Timothy O'Dowd
//
// Input: TT - truth table of a function under test
// Output: FWT - the fast Walsh transform
//
// This implements the fast Walsh transform (see T. Ritter, "Measuring Boolean function
// nonlinearity by Walsh transfrom," http://www.ciphersbyritter.com/ARTS/MEASNONL.HTM).
// For an n-variable function, there are n stages, each with 2^n/2 2-input 2-output
// modules. The left output of a module is the sum of the two inputs, a+b, and the
// right output is the difference of the two inputs, a-b. The interconnecting pattern
// is shown below for n = 3 (from Ritter).
//
// x1x2x3 = 000 001 010 011 100 101 110 111 Values # bits
// original 1 0 0 1 1 1 0 0 1 <-> 0 (1 bit) Interconnection of Stages
// ^---^ ^---^ ^---^ ^---^ level
// Pos. 0 1 2
// first 1 1 1 -1 2 0 0 0 2 <-> -1 (2 bits) 000 L0 L0 L0
// ^-------^ ^-------^ 001 R0 L1 L1
// ^-------^ ^-------^ 010 L1 R0 L2
// second 2 0 0 2 2 0 2 0 4 <-> -2 (3 bits) 011 R1 R1 L3
// ^---------------^ 100 L2 L2 R0
// ^---------------^ 101 R2 L3 R1
// ^---------------^ 110 L3 R2 R2
// ^---------------^ 111 R3 R3 R3
// 4 0 2 2 0 0 -2 2 8 <-> -4 (4 bits)
// 2^g <-> -2^(g-1) (g+1 bits)
//---

// The stages are interconnected by in, a wire array, as follows.
//
// TT in[0] in[1] in[2] in[3] bit index
// (111) 0 - - - 0 31
// - - 0 0 30
// - 0 0 1 29
// 0 0 0 0 28
//
// (110) 0 - - - 1 27
// - - 0 1 26
// - 0 1 1 25
// 0 0 0 0 24
// . .
// . .
// . .
// (010) 0 - - - 0 11
// - - 0 0 10
// - 0 0 1 9
// 0 1 0 0 8
//
// (001) 0 - - - 0 7
// - - 0 0 6
// - 0 0 0 5
// 0 1 0 0 4
//
// (000) 1 - - - 0 3
// - - 0 1 2
// - 0 1 0 1
// 1 1 0 0 0
//
parameter n = 4; // n = number of variables
parameter level = n; // level = level index
localparam N = 2**n; // N = number of input assignments.
/////////////////////////////// module inputs/outputs ////////////////////////////////

 62

input CLK; // Clock.
input [N-1:0] TT; // Input assignments in truth table of input function.
output [N*(n+1)-1:0] FRM; // Each of the N words ([0:N-1]) in output XFRM has n+1
 //bits ([n:0]). [n:0]
wire [N*(n+1)-1:0] FRM; // Each of the N words ([0:N-1]) in output XFRM has n+1
 //bits ([n:0]). [n:0]
//
// Discovery (01/21/10) Apparently, Verilog 2001 ONLY allows one dimensional array as an
// output. However, it allows internal arrays (such as below) to
// be a 2 dimensional array.
//
wire [N*(n+1)-1:0] in[n:0]; //Internal interconnection among FWT stages.
wire [N*(n+1)-1:0] pipe[n:0]; //Internal pipeline registers.
generate
 genvar gg;
 for (gg = 0; gg < N; gg=gg+1)
 begin:Loop1
 assign in[0][gg*(n+1)+:1] = TT[gg];//Set in[0] to input TT.
 end
endgenerate
//
// Discovery (01/25/10) Synplify Pro 8.8.0.4 on my office PC does NOT accept
// defparam u1.level = g;
// stage u1 (A1_in, A2_in, B1_out, B2_out);
// It gives "Expecting generate item" for the defparam u1.level = g statement (whether
// it is located before or after stage u1 (A1_in, A2_in, B1_out, B2_out);).
// However, if you use stage #(.level(g)) u1 (A1_in, A2_in, B1_out, B2_out); , it
// does not complain. However, on my home laptop, Synplify Pro accepts the former.
//
generate
genvar g,h;
for (g = 0; g<n; g=g+1) //g is the level in the FWT circuit
 begin:Loop6 //h is the index to the stages within one level.
 for (h = 0; h < N/2; h=h+1)
 begin:Loop2
 if (g%3 == 2) //if (g==1000)
 begin:Loop4
 pipeline #(.g(g)) u2 (in[g][left(g,h,n)*(n+1)+:g+1], CLK,
 pipe[g][left(g,h,n)*(n+1)+:g+1]);
 pipeline #(.g(g)) u3 (in[g][right(g,h,n)*(n+1)+:g+1], CLK,
 pipe[g][right(g,h,n)*(n+1)+:g+1]);
 stage #(.g(g)) u1 (pipe[g][left(g,h,n)*(n+1)+:g+1],
 pipe[g][right(g,h,n)*(n+1)+:g+1],
 in[g+1][left(g,h,n)*(n+1)+:g+2],
 in[g+1][right(g,h,n)*(n+1)+:g+2]);
 //stage(left_in,right_in,left_out,right_out)
 end
 else
 begin:Loop5
 stage #(.g(g)) u4 (in[g][left(g,h,n)*(n+1)+:g+1],
 in[g][right(g,h,n)*(n+1)+:g+1], in[g+1][left(g,h,n)*(n+1)+:g+2],
 in[g+1][right(g,h,n)*(n+1)+:g+2]);
 //stage(left_in,right_in,left_out,right_out)
 end
 end
 end
endgenerate

assign FRM = in[n];

//
function integer left //left is an index to an output used by a stage to specify its
 //left connection.
(input integer g,h,n); // n = 3 Example
 integer mask, mask_r, mask_l;
 begin:left_loop // g=0 mask g=1 mask g=2 mask
 mask = 2**g; // h L R * L R * L R *
 mask_r = mask - 1; // 0 0 1 (00*) 0 2 (0*0) 0 4 (*00)
 mask_l =2**(n-1)-1 - mask_r; // 1 2 3 (01*) 1 3 (0*1) 1 5 (*01)

 63

 left = ((mask_l & h)<<1) + (mask_r & h); // 2 4 5 (10*) 4 6 (1*0) 2 6 (*10)
 end // 3 6 7 (11*) 5 7 (1*1) 3 7 (*11)
endfunction //
 // So, for g = 1, for example, we have
function integer right
//right is an index to an output used by a stage to specify its right connection.
 //mask = 2**g = 010,
(input integer g,h,n); //mask_r = mask - 1 = 2 - 1 = 001, and
integer mask, mask_r, mask_l; //mask_l = 2**(n-1)-1 - mask_r = 4-1 - 1 = 2 = 010
 begin:right_loop // mask_l & mask_r extract from h, its l & r side.
 mask = 2**g; // left = (010&h)<<1 + 001&h.
 mask_r = mask - 1; // right = (010&h)<<1 + 010 + 001&h.
 mask_l = 2**(n-1)-1 - mask_r; // <<1 is to move mask_l left once to admit the *
 //bit.
 right = ((mask_l & h)<<1)+ (mask_r & h) + mask;
 end
endfunction
endmodule

////// RESULTS W/ NO PIPELINE REGISTERS Updated: 09/05/10 //////
//n = 1 2 3 4 5 6 7 8 9 10
//Freq. (MHz) 148.6 115.0 93.6 70.9 60.4 50.8 44.8 39.6 35.3 32.8
//#LUTs (%) 4(0%) 23(0%) 101(0%) 316(0%)797(1%) 2226(3%) 5700(8%) 14270(21%) 35548(52%)
//85280(126%)
// #Reg Bits 0 0 0 0 0 0 0 0 0 0
///

////// RESULTS W/ PIPELINE REGISTERS (g%3 == 1) Updated: 09/05/10 //////
//n = 1 2 3 4 5 6 7 8 9 10
//Freq. (MHz) 148.6 115.0 119.7 90.6 70.5 101.0 85.6 68.0 96.6 83.7
//#LUTs (%) 4(0%) 23(0%) 86(0%) 318(0%) 853(1%) 2278(3%) 5883(8%) 14772(21%) 36734(54%)
//88443(130%)
// #Reg Bits 0 0 0 0 0 0 0 0 0 0
///

//
//
module stage(left_in, right_in, left_out, right_out);
//---
// One stage only. Note that the structure of stage is independent of n, the number
// of variables. It is dependent only on the level at which the stage resides.
//
parameter g = 3;
/////////////////////////////// module inputs/outputs ////////////////////////////////
//
input [g:0] left_in; // left input.
input [g:0] right_in; // left input.
//
output [g+1:0] left_out; // left output.
output [g+1:0] right_out; // left output.
reg [g+1:0] left_out; // left output.
reg [g+1:0] right_out; // left output.
reg [g+1:0] temp_right;
reg [g+1:0] temp_left;
//
/////////////////////////////// module function ////////////////////////////////

always @(*)
begin
//
//Sign extend left_in and right_in unless = 100...0, in which case make it 0100...0.
// This is done to accommodate 2^g >= Walsh coef >= -2^(g-1) (g+1 bits), as discussed
// above. That is, the special case, Walsh coef = 2^g, is viewed as a positive integer.
// instead of the usual negative integer.
//
 if (left_in != 2**g)//{1'b1,{g{1'b0}}})
 temp_left = {left_in[g],left_in};
 else

 64

 temp_left = {1'b0,left_in};
//
 if (right_in != 2**g)//{1'b1,{g{1'b0}}})
 temp_right = {right_in[g],right_in};
 else
 temp_right = {1'b0,right_in};
//
 left_out = temp_left + temp_right;
 right_out = temp_left - temp_right;
//
end
//
endmodule

//

//
//
module pipeline(pipe_in, CLK, pipe_out);
//---
// One stage only. Note that the structure of stage is independent of n, the number
// of variables. It is dependent only on the level at which the stage resides.
//

parameter g = 64;
/////////////////////////////// module inputs/outputs ////////////////////////////////

input [g:0] pipe_in;
input CLK;

output [g:0] pipe_out;
reg [g:0] pipe_out;
//assign pipe_out = CLK?pipe_in:pipe_out; /This works also.
always @(posedge CLK)
 pipe_out <= pipe_in;

endmodule

//

module convert(CLK, coef_in, coef_out);
//---
// This module takes the FWT coefficients and converts them to distances to linear
// functions.
// Specifically, this is already done for the first coefficients. A conversion is
// needed for all of the other coefficients.
//
// The example below shows the conversion needed.
//
// c0 c1-c15 Add 8 If a>8
// a <- 16-a
//
// 10000 16 01000 8 10000 16 00000 0
// 01111 15 00111 7 01111 15 00001 1
// .
// .
// .
// .
// 00010 2 11010 -6 00010 2 00010 2
// 00001 1 11001 -7 00001 1 00001 1
// 00000 0 11000 -8 00000 0 00000 0
//
// Author: Tim O'Dowd
// Last Updated: 9/7/2010

parameter n = 3; // NUMBER OF VARIABLES IN FUNCTION

 65

localparam N = 2**n; // NUMBER OF VALUES IN TRUTH TABLE OF FUNCTION
localparam nn = n+1; // NUMBER OF BITS IN EACH WORD

input [N*(n+1)-1:0] coef_in;
// THIS IS THE FUNCTION'S FWT. IT HAS N WORDS EACH WITH n+1 BITS. FOR CASE
// n = 4, THERE WILL BE 16 WORDS. EACH WORD WILL BE 5 BITS IN LENGTH.
// TOTAL OF 16*5-1 = 80 BITS. HERE N*(n+1)-1 = 79.
input CLK; // Clock input

output [N*(n+1)-1:0] coef_out; //OUTPUT SHOULD BE SAME LENGTH AS INPUT
reg [N*(n+1)-1:0] coef_out;

reg [n:0] FWT;
//variable to hold the parsed inputs corresponding to the FWT coefficients (see column
//marked c1-c15 above)
reg [n:0] a;
//variable to hold modified FWT inputs (see column marked Add 8 above)

integer g; //variable to increment FOR loop

always@(posedge CLK)
begin

// the least significant input requires special handling
FWT = coef_in [n:0];
a = FWT;
if(a > N/2) a = N - a;
coef_out[n:0] = a;

// all other bits are handled here
 for (g = 1; g < N; g = g+1)
// begin loop to go through input word by word starting with next to least significant nn
bits
 begin:Loop1
 FWT = coef_in [((g+1)*n+g)-:nn];
// Get the next most significant n bits of coef_in
 a = FWT + N/2;
// Add N/2 to FWT to get value of a (EXCLUDING CASE OF LEAST SIGNIFICANT BIT)
 if (a > N/2) a = N - a;
// If a is greater than N/2, then set a to N-a
 coef_out [((g+1)*n+g)-:nn] = a;
// Store a in the appropriate bits in the output
 end // repeat loop
end

endmodule

//

module min(IN, OUT, CLK);
//---
// min.v - A program to compare 2^(n+1) n+1-bit binary values and to deliver the
// smallest to the output. This can be configured in two ways:
// 1. Completely pipelined tree
// 2. Completely combinational tree (except for a register at the output)
//
// In the case of 1. this runs a 209.6 MHz. for all values of n. It was
// tr iedfor n up to 8. At n=8, it takes more than two minutes to compile.
//
// In the case of 2. the Freq. value is as follows
//
// n Freq. (MHz.) Total Runtime
// 2 111.9
// 3 106.1
// 4 73.6
// 5 70.4
// 6 61.2
// 7 53.2 2 min. 45 secs.
// 8 46.7 7 min. 57 secs.

 66

//
// To have a 1. Completely pipelined tree, use <= in three places
// 1. curr_IN[0] <= IN;
// ...
// 2. if(curr_IN[j-1][((2*i + 2)*nn-1)-:nn] <
// curr_IN[j-1][((2*i + 1)*nn-1)-:nn])
// curr_IN[j][((i + 1)*nn-1)-:nn] <=
// curr_IN[j-1][((2*i + 2)*nn-1)-:nn];
// ...
// 3. else curr_IN[j][((i + 1)*nn-1)-:nn] <=
// curr_IN[j-1][((2*i + 1)*nn-1)-:nn];
//
// To have a 2. Completely combinational tree, use <= in three places
// 1. curr_IN[0] = IN;
// ...
// 2. if(curr_IN[j-1][((2*i + 2)*nn-1)-:nn] <
// curr_IN[j-1][((2*i + 1)*nn-1)-:nn])
// curr_IN[j][((i + 1)*nn-1)-:nn] =
// curr_IN[j-1][((2*i + 2)*nn-1)-:nn];
// ...
// 3. else curr_IN[j][((i + 1)*nn-1)-:nn] =
// curr_IN[j-1][((2*i + 1)*nn-1)-:nn];
// ...
//
// NOTE: This produces many warnings that you have unused elements of a
// matrix.
//
//
// Created: November 7, 2007
// Last Modified: September 7, 2010 by Timothy O'Dowd
// Author: Jon T. Butler
//
// Inputs: IN
// Outputs: OUT
//
//---
//
// NOTE: This program is the second time, I have used matrices. For example, curr_min
// is the current minimum value. Using matrices provides control on the structure
// of the circuit produced.

 parameter n = 4; // Number of variables.
 localparam nn = n + 1; // Number of bits in the numbers to be compared.
 localparam N = 2**n; // Number of numbers to be compared. (2**nn = 2^n)
 output [n:0] OUT; // OUT is the smallest of the n+1-bit inputs
 input [nn*N-1:0] IN; // IN is an array of 2^(n+1) (n+1)-bit numbers
 reg [nn*N-1:0] curr_IN [N:0];
 input CLK;
 reg [n:0] curr_min [N:0];

 integer i;

 always @(posedge CLK)
 begin
 curr_min[0] = {nn{1'b1}};
 curr_IN[0] = IN;
 for(i=0; i<N; i=i+1)
 begin: increment
 curr_IN[i+1] <= curr_IN[i]; //Pipeline curr_IN
 if(curr_IN[i][((i+1)*nn-1)-:nn] < curr_min[i]) curr_min[i+1] <=
 curr_IN[i][((i+1)*nn-1)-:nn];
 else curr_min[i+1] <= curr_min[i];
 end
 end
 assign OUT = curr_min[N] ;

endmodule

//

 67

module FWTNL (TT, minNL, CLK); //Module that integrates FWT.v and convert.v and min.v

//Author: Timothy O'Dowd
//Created: 5 September, 2010

parameter n = 4;
localparam N = 2**n;

input CLK; //clock input
input [63:0] TT; //input truth table
output [63:0] minNL; //minimum nonlinearity
reg [63:0] minNL;

wire [N-1:0] TT_internal;
assign TT_internal = TT [N-1:0]; //Assign the internal value of TT

wire [N*(n+1)-1:0] temp_FRM; //holds produced Fast Walsh Transform values
defparam u1.n = n;
FWT u1(CLK, TT_internal, temp_FRM);

wire [N*(n+1)-1:0] temp_coef; //holds temporary FWT coefficients produced
defparam u2.n = n;
convert u2(CLK, temp_FRM, temp_coef);

wire [n:0] temp_out; //holds temporary output (minimum nonlinearity)
defparam u3.n = n;
min u3(temp_coef,temp_out,CLK);

always@(CLK)
begin
minNL = temp_out; //set the output of the module to the proper value
end

endmodule

 68

THIS PAGE INTENTIONALLY LEFT BLANK

 69

APPENDIX B. MATLAB CODE

B1. ALGORITHM FOR PRODUCING BENT FUNCTION TRUTH TABLE

The code for the algorithm described in this thesis that is used to discover a

bent function's truth table given a nearby function's truth table is listed in this appendix.

This code is written for the case where n = 4, but can be modified in order to be used for

other n.

There are several files that are necessary for this algorithm to work properly.

FWT.m is a required file used to compute the FWT of a given TT. NL.m is a required file

used to compute the nonlinearity of a given FWT. functGen.m is a file that generates the

TT of all functions for a given n. FWT.m and NL.m are called by the other files.

functGen.m is called by files that seek to run the algorithm for sets of input functions.

 NLfive.m, NLfour.m, and NLthree.m are files that find a function with

incrementally higher nonlinearity. They each require an input TT with a nonlinearity of

five, four, and three, respectively.

findbent3.m uses functGen.m to apply NLthree.m to every function with a

nonlinearity of three and produces functions with nonlinearity of four. findbent3to5.m is

similar, but takes all the functions that were produced with a nonlinearity of four and

inputs them to NLfour.m to produce output functions with nonlinearities of five.

findbent3to6.m takes this one step further, taking all functions produced with a

nonlinearity of five and applying NLfive.m to produce bent functions. All of these codes

count the number of successes, failures, and the unique functions produced.

findbent4.m and findbent5.m are analogous to findbent3.m. In addition,

findbent4to6.m is analogous to findbent3to6.m.

 70

1. FWT.m

%%
%Timothy O'Dowd
%MATLAB Code to compute the Fast Walsh Transform of an input Truth
Table
%Written: Aug 1, 2010
%Modified: Nov 4, 2010

%INPUTS:
%TT - the truth table of a Boolean function. TT MUST have length 2^n
%n - the number of variables in the Boolean function.
%OUTPUT:
%FWT - the fast Walsh transform of the input TT

%This code is written and verified for the n=4 case. It can be modified
to work
%for other values of n. Bent functions only exist for even n.

function transform = FWT(TT,n)

g = 0; %initialize g, which keeps track of iterations of butterfly
modules
h = 0; %initialize h, which keep track of how many pairs of butterflys
have been computed
curr = []; %array to keep track of current array
next = []; %array to keep track of computed array
delta = 2^g; %number to keep track of gap between left and right inputs
into butterfly
left = 1;
right = left+delta;
numPairs = 2^n/2;%number of butterfly pairs

%paired = TT*0; %initliaze paired to an array the size of TT with all
zero elements

curr = TT; %set TT to current array

for g=0:1:n-1

 for h=1:1:numPairs

 delta = 2^g; %every further array has pairs spread further
apart

 if g == 0
 left = 2*h-1;
 right = left + delta;
 [next(left),next(right)] =
butterfly(curr(left),curr(right));
 elseif g == n-1

 71

 left = h;
 right = left + delta;
 [next(left),next(right)] =
butterfly(curr(left),curr(right));
 elseif h <= 2*g
 left = h;
 right = left + delta;
 [next(left),next(right)] =
butterfly(curr(left),curr(right));
 elseif h <= 4*g
 left = h + 2*g;
 right = left + delta;
 [next(left),next(right)] =
butterfly(curr(left),curr(right));
 elseif h <= 6*g
 left = h + 4*g;
 right = left + delta;
 [next(left),next(right)] =
butterfly(curr(left),curr(right));
 elseif h <= 8*g
 left = h + 6*g;
 right = left + delta;
 [next(left),next(right)] =
butterfly(curr(left),curr(right));

 end
 end

curr = next;
end

transform = next; %return the FWT

function [x,y] = butterfly(a,b)
x = a+b;
y = a-b;
end

end

 72

2. NL.m

%%
%Timothy O'Dowd
%MATLAB Code to compute the Nonlinearity of an input FWT
%Written: Aug 1, 2010
%Modified: Nov 4, 2010

%INPUTS:
%FWT - the Fast Walsh Transform of a Boolean function. FWT MUST have
length 2^n
%n - the number of variables in the Boolean function.
%OUTPUT:
%nonlinearity - the nonlinearity of a Boolean function

%this code works for any value of n

function nonlinearity = NL(FWT,n)

a = FWT; %put FWT into working array

for i=2:1:2^n
 a(i) = a(i) + 2^n/2; %normalize a
end

for i=1:1:2^n
 if a(i) >= 2^n/2
 a(i) = 2^n - a(i); %take absolute value of a
 end
end

nonlinearity = min(a); %return nonlinearity

end

 73

3. functGen.m

%%
%Timothy O'Dowd
%MATLAB Code to compute the Nonlinearity of an input FWT
%Written: Aug 1, 2010
%Modified: Nov 4, 2010

%INPUTS:
%n - the number of variables in the Boolean function.
%init - variable indicating the first call to the function
% 0 = first call; any other value valid for subsequent calls
%current - last function generated
% for first call any value is valid
%OUTPUT:
%exec - next TT sequentially

%this code works for any value of n

function exec = functGen(n,init,current)
initial = []; %initialize initial

for q=1:1:2^n
initial = [initial 0]; %create properly sized array full of zeros
end

if init == 0 %denotes the first call of this function
 current = initial;
end

%for f = 1:1:10 %2^(2^n) %repeat 2^(2^n) times
if init ~= 0
 t = 1; %set t to 1
 good = 1;
 while (good) %t = 1:1:2^n %for every bit of TT
 if (current(t) == 1) %if current bit being looked at is already
a one
 current(t) = 0; %set it to zero
 t = t + 1; %and look at next bit
 else
 current(t) = 1; %if not, set bit to 1 and end
 good = 0; %terminate loop
 end
 end
end
%end
exec = current;
end

 74

4. NLthree.m

%%
%Timothy O'Dowd
%MATLAB Code to implement algorithm to search for a function with NL=4
% given a function with NL=3
%Written: Sep 12, 2010
%Modified: Nov 15, 2010

%INPUTS:
%TT - the truth table of a Boolean function. TT MUST have length 2^n
%n - the number of variables in the Boolean function.
%OUTPUT:
%truth - the truth table of a function nonlinearity increased by one
%nonlin - the nonlinearity of the output function

%This code is written and verified for the n=4 case. It can be modified
%to work for other values of n. Bent functions only exist for even n.

function [truth,nonlin] = NLthree(TT,n)

bentNL = 2^(n-1)-2^(n/2-1); %any bent function will have this NL
bentweightLow = 2^(n-1)-2^(n/2-1); %low value of a bent function's
 %weight
bentweightHigh = 2^(n-1)+2^(n/2-1); %high value of a bent function's
 %weight

nextTT = TT; %iterative TT array
nextFWT = FWT(TT,n); %iterative FWT array
oldTT = TT; %storage for previous TT
oldFWT = nextFWT; %storage for previous FWT
nextnonlin = NL(nextFWT,n); %iterative value of nonlin

t = 0; %t is TT index search variable
f = 2; %FWT index search variable variable
good = 1; %variable used to turn on/off while loop
switchedbit = 0; %variable used to indicate if bit has been
 %complemented
fail = 0; %indicates algorithm failure

%matrix that holds information about how FWT changes as input TT is
%changed
TTvsFWT4 =
[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1;
1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1;
1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1;
1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1;
1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1;
1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1;
1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1;
1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1;

 75

1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1;
1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1;
1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1;
1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1;
1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1;
1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1;
1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1];

disp('Input Truth Table is:')
disp(TT)
disp('Fast Walsh Transform is:')
disp(nextFWT)
disp('Nonlinearity is:')
disp(nextnonlin)

while (nextnonlin < bentNL-2 && ~fail)
%if function has NL = 3 and fail condition isn't set, use algorithm

 %In this case, the TT needs three 0's to become 1's
if (nextFWT(1) == bentweightLow-3)

 %find the next 0 in the TT to change and increment TT counter
 t = t + 1; %increment t
 if t > 2^n %here, there is no 0->1 transition that works
 fail = 1; %set fail condition!
 t = 1; %reset t to one
 end

 while (nextTT(t)== 1 && ~fail)
 t = t + 1;
 if t > 2^n %here, there is no 0->1 transition that works
 fail = 1; %set fail condition!
 t = 1; %reset t to one
 end
 f = 2; %reset f when a new value of TT entry is used
 end

 if(~fail)
 for f=2:1:2^n %test each element of FWT to see if changing t
 %in TT would give function with LOWER nonlinearity

 if TTvsFWT4(t,f) == -1 && nextFWT(f) == -5 ||
 TTvsFWT4(t,f) == 1 && nextFWT(f) == 5
 good = 0; %if potential transition gives LOWER
 %nonlinearity we do not try this transistion
 end
 end

 if (good) %if criteria is met, we try the transition
 disp('Complementing bit:')
 t
 oldTT = nextTT; %store old TT

 76

 nextTT(t) = nextTT(t)+1; %make 0->1 transition in the TT
 oldFWT = nextFWT; %store old FWT
 nextFWT = FWT(nextTT,n); %get FWT of new TT
 nextnonlin = NL(nextFWT,n); %check to see if transition
 %increased nonlinearity

 switchedbit = 1;
 end

 %this portion of code should never be used. a transition will
 %never be made due to the checks performed above

 if (nextnonlin < bentNL-2 && switchedbit) %check to see if
 %transition worked
 disp('Unsuccessful bit chosen. Restoring original Truth Table')
 nextTT = oldTT; %if not, undo transition
 t = t + 1; %try again with next digit
 nextFWT = oldFWT; %and restore old FWT
 switchedbit = 0; %reset
 end

 good = 1; %reset good
 end
end

 %In this case, the TT needs three 1s to become 0s
if nextFWT(1) == bentweightHigh+3

 %find the next 0 in the TT to change and increment TT counter
 t = t + 1; %increment t
 if t > 2^n %here, there is no 0->1 transition that works
 fail = 1; %set fail condition
 t = 1; %reset t to one
 end
 while (nextTT(t)== 0 && ~fail)
 t = t + 1;
 if t > 2^n %here, there is no 0->1 transition that works
 fail = 1; %set fail condition
 t = 1; %reset t to one
 end
 f = 2; %reset f when a new value of TT entry is used
 end

 if(~fail)
 for f=2:1:2^n %test each element of FWT to see if changing
 %t in TT would give LOWER nonlinearity

 if TTvsFWT4(t,f) == -1 && nextFWT(f) == 5 ||
 TTvsFWT4(t,f) == 1 && nextFWT(f) == -5
 good = 0; %if criteria is met we will move on to
 %next possible transition
 end
 end

 77

 if (good) %if criteria is met, we try the transition
 disp('Complementing bit:')
 t
 oldTT = nextTT; %store old TT
 nextTT(t) = nextTT(t)-1; %make 1->0 transition in the TT
 oldFWT = nextFWT; %store old FWT
 nextFWT = FWT(nextTT,n); %get FWT of new TT
 nextnonlin = NL(nextFWT,n); %check to see if transition
 %increased nonlinearity

 switchedbit = 1;

 end

 %this portion of code should never be used. a transition will
 %never be made due to the checks performed above

 if (nextnonlin < bentNL-2 && switchedbit) %check to see if
 %transition worked
 disp('Unsuccessful bit chosen. Restoring original Truth Table')
 nextTT = oldTT; %if not, undo transition
 t = t + 1; %try again with next digit
 nextFWT = oldFWT; %and restore old FWT
 switchedbit = 0; %reset
 end

 good = 1; %reset good
 end
end

 %In this case, the TT correct number of 1's/0's (ambiguous
 %case) This program DEFAULTS to ADDING a 1
if nextFWT(1) == bentweightLow - 1 || nextFWT(1) == bentweightLow + 1
|| nextFWT(1) == bentweightHigh -1 || nextFWT(1) == bentweightHigh + 1

 %find the next 0 in the TT to change and increment TT counter
 t = t + 1; %increment t
 if t > 2^n %here, there is no 0->1 transition that works
 fail = 1; %note that 1->0 transition is needed
 t = 1; %reset t to one
 end
 while (nextTT(t)== 1 && ~fail)
 t = t + 1;
 if t > 2^n %here, there is no 0->1 transition that works
 fail = 1; %note that 1->0 transition is needed
 t = 1; %reset t to one
 end
 f = 2; %reset f when a new value of TT entry is used
 end

 if(~fail)
 for f=2:1:2^n %test each element of FWT to see if changing
 %t in TT would give LOWER nonlinearity

 78

 if TTvsFWT4(t,f) == 1 && nextFWT(f) == 5 ||
 TTvsFWT4(t,f) == -1 && nextFWT(f) == -5
 good = 0; %if criteria is not met we will move on
 %to next possible transition
 end
 end

 if (good) %if criteria is met, we try the transition
 disp('Complementing bit:')
 t
 oldTT = nextTT; %store old TT
 nextTT(t) = nextTT(t)+1; %make 1->0 transition in the TT
 oldFWT = nextFWT; %store old FWT
 nextFWT = FWT(nextTT,n); %get FWT of new TT
 nextnonlin = NL(nextFWT,n); %check to see if transition
 %increased nonlinearity

 switchedbit = 1;

 end

 %this portion of code should never be used. a transition will
 %never be made due to the checks performed above

 if (nextnonlin < bentNL-2 && switchedbit) %check to see if
 %transition worked
 disp('Unsuccessful bit chosen. Restoring original Truth Table')
 nextTT = oldTT; %if not, undo transition
 t = t + 1; %try again with next digit
 nextFWT = oldFWT; %and restore old FWT
 switchedbit = 0; %reset
 end

 good = 1; %reset good
 end
end

end

 if(~fail)
 truth = nextTT;
 nonlin = nextnonlin;
 disp('Correct bit chosen!')
 disp('')
 disp('New Truth Table:')
 disp(truth)
 disp('Nonlinearity is:')
 disp(nextnonlin)
 else
 disp('Algorithm Failure')

 79

 truth = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; %output array that
signals failure
 nonlin = 500; %indicates a failure
 end
end

5. NLfour.m

%%
%Timothy O'Dowd
%MATLAB Code to implement algorithm to search for a function with NL=4
% given a function with NL=3
%Written: Sep 12, 2010
%Modified: Nov 15, 2010

%INPUTS:
%TT - the truth table of a Boolean function. TT MUST have length 2^n
%n - the number of variables in the Boolean function.
%OUTPUT:
%truth - the truth table of a function nonlinearity increased by one
%nonlin - the nonlinearity of the output function

%This code is written and verified for the n=4 case. It can be modified
%to work for other values of n. Bent functions only exist for even n.

function [truth,nonlin] = NLthree(TT,n)

bentNL = 2^(n-1)-2^(n/2-1); %any bent function will have this NL
bentweightLow = 2^(n-1)-2^(n/2-1); %low value of a bent function's
 %weight
bentweightHigh = 2^(n-1)+2^(n/2-1); %high value of a bent function's
 %weight

nextTT = TT; %iterative TT array
nextFWT = FWT(TT,n); %iterative FWT array
oldTT = TT; %storage for previous TT
oldFWT = nextFWT; %storage for previous FWT
nextnonlin = NL(nextFWT,n); %iterative value of nonlin

t = 0; %t is TT index search variable
f = 2; %FWT index search variable variable
good = 1; %variable used to turn on/off while loop
switchedbit = 0; %variable used to indicate if bit has been
 %complemented
fail = 0; %indicates algorithm failure

%matrix that holds information about how FWT changes as input TT is
%changed
TTvsFWT4 =
[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1;

 80

1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1;
1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1;
1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1;
1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1;
1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1;
1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1;
1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1;
1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1;
1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1;
1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1;
1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1;
1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1;
1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1;
1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1];

disp('Input Truth Table is:')
disp(TT)
disp('Fast Walsh Transform is:')
disp(nextFWT)
disp('Nonlinearity is:')
disp(nextnonlin)

%Only run if input function has NL = 4 and fail condition not met

while (nextnonlin < bentNL-2 && ~fail)

 %In this case, the TT needs three 0's to become 1's
if (nextFWT(1) == bentweightLow-3)

 %find the next 0 in the TT to change and increment TT
 %counter
 t = t + 1; %increment t
 if t > 2^n %here, there is no 0->1 transition that works
 fail = 1; %set fail!
 t = 1; %reset t to one
 end
 while (nextTT(t)== 1 && ~fail)
 t = t + 1;
 if t > 2^n %here, there is no 0->1 transition that
 %works
 fail = 1; %set fail!
 t = 1; %reset t to one
 end
 f = 2; %reset f when a new value of TT entry is used
 end

 if(~fail)
 for f=2:1:2^n %test each element of FWT to see if changing
 %in TT would give function with LOWER nonlinearity

 if TTvsFWT4(t,f) == -1 && nextFWT(f) == -5 ||
TTvsFWT4(t,f) == 1 && nextFWT(f) == 5

 81

 good = 0; %if potential transition gives LOWER
 %nonlinearity we do not try this transistion
 end
 end

 if (good) %if criteria is met, we try the transition
 disp('Complementing bit:')
 t
 oldTT = nextTT; %store old TT
 nextTT(t) = nextTT(t)+1; %make 0->1 transition in the TT
 oldFWT = nextFWT; %store old FWT
 nextFWT = FWT(nextTT,n); %get FWT of new TT
 nextnonlin = NL(nextFWT,n); %check to see if transition
 %increased nonlinearity

 switchedbit = 1;
 end

 %this portion of code should never be used. a transition will
 %never be made due to the checks performed above

 if (nextnonlin < bentNL-2 && switchedbit) %check to see if
 %transition worked
 disp('Unsuccessful bit chosen. Restoring original Truth Table')
 nextTT = oldTT; %if not, undo transition
 t = t + 1; %try again with next digit
 nextFWT = oldFWT; %and restore old FWT
 switchedbit = 0; %reset
 end

 good = 1; %reset good
 end
end

 %In this case, the TT needs three 1s to become 0s
if nextFWT(1) == bentweightHigh+3

 %find the next 0 in the TT to change and increment TT counter
 t = t + 1; %increment t
 if t > 2^n %here, there is no 0->1 transition that works
 fail = 1; %set fail
 t = 1; %reset t to one
 end
 while (nextTT(t)== 0 && ~fail)
 t = t + 1;
 if t > 2^n %here, there is no 0->1 transition that
 %works
 fail = 1; %set fail
 t = 1; %reset t to one
 end
 f = 2; %reset f when a new value of TT entry is used
 end

 82

 if(~fail)
 for f=2:1:2^n %test each element of FWT to see if changing
 %t in TT would give LOWER nonlinearity

 if TTvsFWT4(t,f) == -1 && nextFWT(f) == 5 ||
 TTvsFWT4(t,f) == 1 && nextFWT(f) == -5
 good = 0; %if criteria is met we will move on to
 %next possible transition
 end
 end

 if (good) %if criteria is met, we try the transition
 disp('Complementing bit:')
 t
 oldTT = nextTT; %store old TT
 nextTT(t) = nextTT(t)-1; %make 1->0 transition in the TT
 oldFWT = nextFWT; %store old FWT
 nextFWT = FWT(nextTT,n); %get FWT of new TT
 nextnonlin = NL(nextFWT,n); %check to see if transition
 %increased nonlinearity

 switchedbit = 1;

 end

 %this portion of code should never be used. a transition will
 %never be made due to the checks performed above

 if (nextnonlin < bentNL-2 && switchedbit) %check to see if
 %transition worked
 disp('Unsuccessful bit chosen. Restoring original Truth Table')
 nextTT = oldTT; %if not, undo transition
 t = t + 1; %try again with next digit
 nextFWT = oldFWT; %and restore old FWT
 switchedbit = 0; %reset
 end

 good = 1; %reset good
 end
end

 %In this case, the TT correct number of 1's/0's (ambiguous
 %case) This program DEFAULTS to ADDING a 1
if nextFWT(1) == bentweightLow - 1 || nextFWT(1) == bentweightLow + 1
|| nextFWT(1) == bentweightHigh -1 || nextFWT(1) == bentweightHigh + 1

 %find the next 0 in the TT to change and increment TT counter
 t = t + 1; %increment t
 if t > 2^n %here, there is no 0->1 transition that works
 fail = 1; %set fail
 t = 1; %reset t to one
 end
 while (nextTT(t)== 1 && ~fail)
 t = t + 1;

 83

 if t > 2^n %here, there is no 0->1 transition that
 %works
 fail = 1; %set fail
 t = 1; %reset t to one
 end
 f = 2; %reset f when a new value of TT entry is used
 end

 if(~fail)
 for f=2:1:2^n %test each element of FWT to see if changing
 %t in TT would give LOWER nonlinearity

 if TTvsFWT4(t,f) == 1 && nextFWT(f) == 5 ||
 TTvsFWT4(t,f) == -1 && nextFWT(f) == -5
 good = 0; %if criteria is not met we will move on
 %to next possible transition
 end
 end

 if (good) %if criteria is met, we try the transition
 disp('Complementing bit:')
 t
 oldTT = nextTT; %store old TT
 nextTT(t) = nextTT(t)+1; %make 1->0 transition in the TT
 oldFWT = nextFWT; %store old FWT
 nextFWT = FWT(nextTT,n); %get FWT of new TT
 nextnonlin = NL(nextFWT,n); %check to see if transition
 %increased nonlinearity

 switchedbit = 1;

 end

 %this portion of code should never be used. a transition will
 %never be made due to the checks performed above

 if (nextnonlin < bentNL-2 && switchedbit) %check to see if
 %transition worked
 disp('Unsuccessful bit chosen. Restoring original Truth Table')
 nextTT = oldTT; %if not, undo transition
 t = t + 1; %try again with next digit
 nextFWT = oldFWT; %and restore old FWT
 switchedbit = 0; %reset
 end

 good = 1; %reset good
 end
end

end

 84

 if(~fail)
 truth = nextTT;
 nonlin = nextnonlin;
 disp('Correct bit chosen!')
 disp('')
 disp('New Truth Table:')
 disp(truth)
 disp('Nonlinearity is:')
 disp(nextnonlin)
 else
 disp('Algorithm Failure')
 truth = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; %output array that
%signals failure
 nonlin = 500; %indicates a failure
 end
end

6. NLfive.m

%%
%Timothy O'Dowd
%MATLAB Code to implement algorithm to search for a bent function
%Written: Sep 12, 2010
%Modified: Nov 15, 2010

%INPUTS:
%TT - the truth table of a Boolean function. TT MUST have length 2^n
%n - the number of variables in the Boolean function.
%OUTPUT:
%truth - the truth table of a bent function.
%nonlin - the nonlinearity of the output functions

%Note: This code is written and verified for the n=4 case. It can be
modified to work
%for other values of n. Bent functions only exist for even n.

function [truth,nonlin] = NLfive(TT,n)

bentNL = 2^(n-1)-2^(n/2-1); %any bent function will have this NL
bentweightLow = 2^(n-1)-2^(n/2-1); %low value of a bent function's
%weight
bentweightHigh = 2^(n-1)+2^(n/2-1); %high value of a bent function's
%weight

nextTT = TT; %iterative TT array
nextFWT = FWT(TT,n); %iterative FWT array
oldTT = TT; %storage for previous TT
oldFWT = nextFWT; %storage for previous FWT

 85

nextnonlin = NL(TT,n); %iterative value of nonlin

t = 0; %t is TT index search variable
f = 2; %FWT index search variable variable
good = 1; %variable used to turn on/off while loop
switchedbit = 0; %variable used to indicate whether bit has been
%complemented

%matrix that holds information about how FWT changes as input TT is
%changed
TTvsFWT4 =
[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1;
1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1;
1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1;
1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1;
1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1;
1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1;
1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1;
1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1;
1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1;
1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1;
1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1;
1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1;
1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1;
1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1;
1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1];

disp('Input Truth Table is:')
disp(TT)
disp('Fast Walsh Transform is:')
disp(nextFWT)
disp('Nonlinearity is:')
disp(nextnonlin)

while (nextnonlin < bentNL) %if function ISNT bent, use algorithm

 %In this case, the TT needs one 0 to become a 1
if (nextFWT(1) == bentweightLow-1 || nextFWT(1) == bentweightHigh-1)

 %find the next 0 in the TT to change and increment TT
 %counter
 t = t + 1; %increment t
 while (nextTT(t)== 1)
 t = t + 1;
 f = 2; %reset f when a new value of TT entry is used
 end

 for f=2:1:2^n %test each element of FWT to see if changing
 %t in TT would give bent function

 86

 if TTvsFWT4(t,f) == -1 && nextFWT(f) == 3 ||
 TTvsFWT4(t,f) == -1 && nextFWT(f) == -1 ||
 TTvsFWT4(t,f) == 1 && nextFWT(f) == 1 ||
 TTvsFWT4(t,f) == 1 && nextFWT(f) == -3
 else
 good = 0; %if criteria is not met we will move on
 %to next possible transition
 end
 end

 if (good) %if criteria is met, we try the transition
 disp('Complementing bit:')
 disp(t)
 oldTT = nextTT; %store old TT
 nextTT(t) = nextTT(t)+1 %make 0->1 transition in the TT
 oldFWT = nextFWT; %store old FWT
 nextFWT = FWT(nextTT,n); %get FWT of new TT
 nextnonlin = NL(nextFWT,n); %check to see if transition
 %increased nonlinearity

 switchedbit = 1; %used to indicate if transition was
 %made

 end

 %this portion of code should never be used. a transition will
 %never be made due to the checks performed above

 if (nextnonlin < bentNL && switchedbit) %check to see if
 %transition worked
 disp('Unsuccessful bit chosen. Restoring original Truth Table')
 disp(t)
 nextTT = oldTT; %if not, undo transition
 t = t + 1; %try again with next digit
 nextFWT = oldFWT; %and restore old FWT
 switchedbit = 0; %reset
 end
 good = 1; %reset good
 end

 %In this case, the TT needs one 1 to become a 0
if nextFWT(1) == bentweightLow+1 || nextFWT(1) == bentweightHigh+1

 %find the next 1 in the TT to change and increment TT counter
 t = t + 1; %increment t
 while (nextTT(t)== 0)
 t = t + 1;
 f = 2; %reset f when a new value of TT entry is used
 end

 87

 for f=2:1:2^n %test each element of FWT to see if changing
 %t in TT would give bent function

 if TTvsFWT4(t,f) == 1 && nextFWT(f) == 3 ||
 TTvsFWT4(t,f) == 1 && nextFWT(f) == -1||
 TTvsFWT4(t,f) == -1 && nextFWT(f) == 1 ||
 TTvsFWT4(t,f) == -1 && nextFWT(f) == -3
 else
 good = 0; %if criteria is not met we will move on
 %to next possible transition
 end
 end

 if (good) %if criteria is met, we try the transition
 disp('Complementing bit:')
 disp(t)
 oldTT = nextTT; %store old TT
 nextTT(t) = nextTT(t)-1; %make 1->0 transition in the TT
 oldFWT = nextFWT; %store old FWT
 nextFWT = FWT(nextTT,n); %get FWT of new TT
 nextnonlin = NL(nextFWT,n); %check to see if transition
 %increased nonlinearity

 switchedbit = 1; %used to indicate if transition was
 %made

 end

 %this portion of code should never be used. a transition will
 %never be made due to the checks performed above

 if (nextnonlin < bentNL && switchedbit) %check to see if
 %transition worked
 disp('Unsuccessful bit chosen. Restoring original Truth Table')
 disp(t)
 nextTT = oldTT; %if not, undo transition
 t = t + 1; %try again with next digit
 nextFWT = oldFWT; %and restore old FWT
 switchedbit = 0; %reset
 end
 good = 1; %reset good
 end

end
disp('Correct bit chosen!')
disp('')
disp('Bent Function Truth Table:')
truth = nextTT;
nonlin = nextnonlin;
end

 88

7. findbent3.m

%%
%Timothy O'Dowd
%MATLAB Code to implement algorithm to for functions with NL=4 given
%ALL functions with NL=3

%Written: Sep 12, 2010
%Modified: Nov 4, 2010

%INPUTS:
%n - the number of variables in the Boolean function.
%OUTPUTS: none
%
%This program will display the number of functions tested, the number
%of successes, the number of failures, and the number of unique
%functions produced by successes..

%This code is written for the n=4 case. It can be modified to work
%for other values of n. Bent functions only exist for even n.

function [] = findbent3(n)

bentNL = 2^(n-1)-2^(n/2-1); %any bent function will have this NL
bent = 0; %counts unique number of functions found
numberTested = 0; %counts number of functions tested
failures = 0; %counts number of algorithm failures
success = 0; %counts number of algorithm successes
bentTT = []; %gathers bent function TTs

TT = functGen(n,0,0); %generate first function to be tested

truth = []; %initialize truth array

for t=1:1:2^(2^n)

 if(~isequal(TT,[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1])) %stop if 1
 %function is reached
 TT = functGen(n,t,TT)%get next TT
 end

a = FWT(TT,n); %find the FWT of the input TT
nonlin = NL(a,n); %find the NL of the input TT

while (nonlin == bentNL-3) %Only examine for NL = 3

 [truth,nonlin] = NLthree(TT,n); %produce TT with higher NL
 numberTested = numberTested + 1;

 if (nonlin == bentNL-2)

 89

 bentTT = [bentTT;truth]; %if function with NL=4 produced,
 %collect it
 success = success + 1;
 end

 if (isequal(truth,[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]))
 failures = failures + 1; %count a failure if algorithm returned
 %failure array
 end

end

end
[bent sizeBent] = size(unique(bentTT,'rows')) %Bent returns the number
 %of UNIQUE functions with NL=4 found
numberTested
success
failures
end

8. findbent3to5.m

%%
%Timothy O'Dowd
%MATLAB Code to implement algorithm to search for a functions
%with NL=5 given all functions with NL=3

%Written: Sep 12, 2010
%Modified: Nov 4, 2010

%INPUTS:
%n - the number of variables in the Boolean function.
%OUTPUTS: none
%
%This program will display the number of functions tested, the number
%of successes, the number of failures, and the number of unique
%functions produced by successes.

%This code is written for the n=4 case. It can be modified to work
%for other values of n. Bent functions only exist for even n.

function [] = findbent3to5(n)

bentNL = 2^(n-1)-2^(n/2-1); %any bent function will have this NL
bent = 0; %counts unique number of functions found
numberTested = 0; %counts number of functions tested

 90

failures = 0; %counts number of algorithm failures
success = 0; %counts number of algorithm successes
bentTT = []; %gathers bent function TTs

TT = functGen(n,0,0); %generate first function to be tested

truth = []; %initialize truth array

for t=1:1:2^(2^n)

 if(~isequal(TT,[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1])) %stop of 1
 %function is reached
 TT = functGen(n,t,TT)%get next TT
 end

a = FWT(TT,n); %find the FWT of the input TT
nonlin = NL(a,n); %find the NL of the input TT

while (nonlin == bentNL-3) %Only examine for NL = 3

 [truth,nonlin] = NLthree(TT,n); %produce TT with higher NL
 numberTested = numberTested + 1;

 if (nonlin == bentNL-2) %if we produced a function with NL = 4
 [truth, nonlin] = NLfour(truth,n); %now see if we can find
 %function with NL = 5
 end

 if (nonlin == bentNL-1)
 bentTT = [bentTT;truth]; %if function with NL = 5 produced,
 %collect it!
 success = success + 1;
 end

 if (isequal(truth,[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]))
 failures = failures + 1; %count a failure if algorithm returned
 %failure array
 end

end

end
[bent sizeBent] = size(unique(bentTT,'rows')) %Bent returns the number
 %of UNIQUE functions with NL=5 found
numberTested
success

 91

failures
end

9. findbent3to6.m

%%
%Timothy O'Dowd
%MATLAB Code to implement algorithm to search for a bent function
%given ALL functions with NL=3 as inputs

%Written: Sep 12, 2010
%Modified: Nov 4, 2010

%INPUTS:
%n - the number of variables in the Boolean function.
%OUTPUTS: none
%
%This program will display the number of functions tested, the number
%of successes, the number of failures, and the number of unique
%functions produced by successes.

%This code is written for the n=4 case. It can be modified to work
%for other values of n. Bent functions only exist for even n.

function [] = findbent3to6(n)

bentNL = 2^(n-1)-2^(n/2-1); %any bent function will have this NL
bent = 0; %counts unique number of functions found
numberTested = 0; %counts number of functions tested
failures = 0; %counts number of algorithm failures
success = 0; %counts number of algorithm successes
bentTT = []; %gathers bent function TTs

TT = functGen(n,0,0); %generate first function to be tested

truth = []; %initialize truth array

for t=1:1:2^(2^n)

 if(~isequal(TT,[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1])) %stop if 1
 %function is reached
 TT = functGen(n,t,TT)%get next TT
 end

a = FWT(TT,n); %find the FWT of the input TT
nonlin = NL(a,n); %find the NL of the input TT

while (nonlin == bentNL-3) %Only examine for NL = 3

 92

 [truth,nonlin] = NLthree(TT,n); %produce TT with higher NL
 numberTested = numberTested + 1;

 if (nonlin == bentNL-2) %if we produced a function with NL = 4
 [truth, nonlin] = NLfour(truth,n); %now see if we can find
 %function with NL = 5
 end

 if (nonlin == bentNL-1)
 [truth, nonlin] = NLfive(truth,n); %now see if we can find a
 %bent function!
 bentTT = [bentTT;truth]; %if bent function produced, collect it
 success = success + 1;
 end

 if (isequal(truth,[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]))
 failures = failures + 1; %count a failure if algorithm returned
 %failure array
 end

end

end
[bent sizeBent] = size(unique(bentTT,'rows')) %Bent returns the number
 %of UNIQUE bent functions found
numberTested
success
failures
end

10. findbent4.m

%%
%Timothy O'Dowd
%MATLAB Code to implement algorithm to search for a functions
%with NL=5 given ALL functions with NL=4

%Written: Sep 12, 2010
%Modified: Nov 4, 2010

%INPUTS:
%n - the number of variables in the Boolean function.
%OUTPUTS: none
%
%This program will display the number of functions tested, the number
%of successes, the number of failures, and the number of unique
%functions produced by successes.

%This code is written for the n=4 case. It can be modified to work
%for other values of n. Bent functions only exist for even n.

 93

function [] = findbent4(n)

bentNL = 2^(n-1)-2^(n/2-1); %any bent function will have this NL
bent = 0; %counts unique number of functions found
numberTested = 0; %counts number of functions tested
failures = 0; %counts number of algorithm failures
success = 0; %counts number of algorithm successes
bentTT = []; %gathers bent function TTs

TT = functGen(n,0,0); %generate first function to be tested

truth = []; %initialize truth array

for t=1:1:2^(2^n)

 if(~isequal(TT,[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1])) %stop if 1
 %function is reached
 TT = functGen(n,t,TT)%get next TT
 end

a = FWT(TT,n); %find the FWT of the input TT
nonlin = NL(a,n); %find the NL of the input TT

while (nonlin == bentNL-2) %Only examine for NL = 4

 [truth,nonlin] = NLfour(TT,n); %produce TT with higher NL
 numberTested = numberTested + 1;

 if (nonlin == bentNL-1)
 bentTT = [bentTT;truth]; %if bent function produced, collect it
 success = success + 1;
 end

 if (isequal(truth,[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]))
 failures = failures + 1; %count a failure if algorithm returned
 %failure array
 end

end

end
[bent sizeBent] = size(unique(bentTT,'rows')) %Bent returns the number
 %of UNIQUE functions found with NL = 5
numberTested
success
failures
end

 94

11. findbent4to6.m

%%
%Timothy O'Dowd
%MATLAB Code to implement algorithm to search for bent functions
%given ALL functions with NL=4

%Written: Sep 12, 2010
%Modified: Nov 15, 2010

%INPUTS:
%n - the number of variables in the Boolean function.
%OUTPUTS: none
%
%This program will display the number of functions tested, the number
%of successes, the number of failures, and the number of unique
%functions produced by successes.

%This code is written for the n=4 case. It can be modified to work
%for other values of n. Bent functions only exist for even n.

function [] = findbent4to6(n)

bentNL = 2^(n-1)-2^(n/2-1); %any bent function will have this NL
bent = 0; %counts unique number of functions found
numberTested = 0; %counts number of functions tested
failures = 0; %counts number of algorithm failures
success = 0; %counts number of algorithm successes
bentTT = []; %gathers bent function TTs

TT = functGen(n,0,0); %generate first function to be tested

truth = []; %initialize truth array

for t=1:1:2^(2^n)

 if(~isequal(TT,[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1])) %stop if 1
 %function is reached
 TT = functGen(n,t,TT)%get next TT
 end

a = FWT(TT,n); %find the FWT of the input TT
nonlin = NL(a,n); %find the NL of the input TT

while (nonlin == bentNL-2) %Only examine for NL = 4

 [truth,nonlin] = NLfour(TT,n); %produce TT with higher NL

 95

 numberTested = numberTested + 1;

 if (nonlin == bentNL-1) %if we produced a function with NL = 5
 [truth, nonlin] = NLfive(truth,n); %now see if we can find a
 %bent function!
 bentTT = [bentTT;truth]; %if bent function produced, collect it
 success = success + 1;
 end

 if (isequal(truth,[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]))
 failures = failures + 1; %count a failure if algorithm returned
 %failure array
 end

end

end
[bent sizeBent] = size(unique(bentTT,'rows')) %Bent returns the number
 %of UNIQUE bent functions found
numberTested
success
failures
end

12. findbent5.m

%%
%Timothy O'Dowd
%MATLAB Code to implement algorithm to search for bent functions
%given ALL functions with NL=5

%Written: Sep 12, 2010
%Modified: Nov 4, 2010

%INPUTS:
%n - the number of variables in the Boolean function.
%OUTPUTS: none
%
%This program will display the number of functions tested, the number
%of successes, the number of failures, and the number of unique
%functions produced by successes.

%This code is written for the n=4 case. It can be modified to work
%for other values of n. Bent functions only exist for even n.

function [] = findbent5(n)

 96

bentNL = 2^(n-1)-2^(n/2-1); %any bent function will have this NL
bent = 0; %counts unique number of bent functions found
numberTested = 0; %counts number of functions tested
failures = 0; %counts number of algorithm failures
success = 0; %counts number of algorithm successes
bentTT = []; %gathers bent function TTs

TT = functGen(n,0,0); %generate first function to be tested

truth = []; %initialize truth array

for t=1:1:2^(2^n)

 if(~isequal(TT,[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1])) %stop if 1
 %function is reached
 TT = functGen(n,t,TT)%get next TT
 end

a = FWT(TT,n); %find the FWT of the input TT
nonlin = NL(a,n); %find the NL of the input TT

while (nonlin == bentNL-1) %Only examine for NL = 5

 [truth,nonlin] = NLfive(TT,n); %produce TT with higher NL
 numberTested = numberTested + 1;

 if (nonlin == bentNL)
 bentTT = [bentTT;truth]; %if bent function produced, collect it
 success = success + 1;
 end

 if (isequal(truth,[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]))
 failures = failures + 1; %count a failure if algorithm returned
 %failure array
 end

end

end
[bent sizeBent] = size(unique(bentTT,'rows')) %Bent returns the number
 %of UNIQUE bent functions found
numberTested
success
failures
end

 97

LIST OF REFERENCES

[1] O. S. Rothaus, “On bent functions,” J. Combin. Th., Ser. A, vol. 20, pp. 300–305,
1976.

[2] T. W. Cusick and P. Stănică, Cryptographic Boolean Functions and Applications.
San Diego: Academic Press, p. 73, 2009.

[3] United States Department of Defense, JP 3-13: Joint Doctrine for Information
Operations. Washington, D.C.: GPO, p. 53, 2006.

[4] F. Sulak, “Constructions of bent functions,” M.S. thesis, The Middle East
Technical University, Ankara, Turkey, 2006.

[5] Q. Meng, H. Zhang, M. Yang, and J. Cu, “A novel algorithm enumerating bent
functions,” http://eprint.iacr.org, 2004/274, accessed February 20, 2010.

[6] A. Grocholewska-Czuryło, “A study of differences between bent functions
constructed using Rothaus method and randomly generated bent functions,”
Journal of Telecommunications and Information Technology, vol. 4, pp. 19–24,
2004.

[7] P. Stănică, and S. Hak Sung, “Boolean functions with five controllable
cryptographic properties,” Des. Codes Cryptography, vol. 31, issue 2, pp. 147–
157, February 2004.

[8] T. W. Cusick and P. Stănică, Cryptographic Boolean Functions and Applications.
San Diego: Academic Press, pp. 81–97, 2009.

[9] T. Ritter, “Measuring Boolean Function Nonlinearity by Walsh Transform.”
Internet: http://www.ciphersbyritter.com/ARTS/MEASNONL. [Nov. 13, 2010].

[10] N. Schafer, “The characteristics of the binary decision diagrams of bent
functions,” M.S. thesis, Naval Postgraduate School, Monterey, CA, September
2009.

[11] S. Schneider, “Finding bent functions with genetic algorithms,” M.S. thesis,
Naval Postgraduate School, Monterey, CA, September 2009.

[12] J. Shafer, “An analysis of bent function properties using the transeunt triangle and
the SRC-6 reconfigurable computer,” M.S. thesis, Naval Postgraduate School,
Monterey, CA, September 2009.

[13] T. Xia, J. Seberry, J. Pieprzyk, and C. Charnes, “Homogeneous bent functions of
degree n in 2n variables do not exist for n>3,” Discrete Applied Mathematics, vol.
142, pp. 127–132, 2004.

 98

[14] C. Johnson, “The circular pipeline: achieving higher throughput in the search for
bent functions,” M.S. thesis, Naval Postgraduate School, Monterey, CA,
September 2009.

[15] “Introduction to EC3820 and its Laboratory,” class notes for EC3820, Department
of Electrical and Computer Engineering, Naval Postgraduate School, Summer
2010.

[16] Shafer, J.L., Schneider, S.W., Butler, J.T., Stănică, P. “Enumeration of bent
Boolean functions by reconfigurable computer,” Field-Programmable Custom
Computing Machines (FCCM), 2010 18th IEEE Annual International Symposium,
pp. 265–272, 2–4 May 2010

[17] Fino, B.J., Algazi, V.R., “Unified matrix treatment of the Fast Walsh-Hadamard
Transform,” IEEE Transactions on Computers, vol. C-25, no. 11, pp. 1142–1146,
Nov. 1976

[18] J. T. Butler and T. Sasao, “Logic functions for cryptograph–A tutorial,” in
Proceedings of the Reed-Muller Workshop, pp. 127–136, 2009.

 99

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr. Clark Robertson
Naval Postgraduate School
Monterey, California

4. Dr. John G. Harkins

National Security Agency
Fort Meade, Maryland

5. Dr. David R. Podany

National Security Agency
Fort Meade, Maryland

6. Mr. David Caliga

SRC Computers
Colorado Springs, Colorado

7. Mr. Jon Huppenthal

SRC Computers
Colorado Springs, Colorado

8. Dr. Jeff Hammes

SRC Computers
Colorado Springs, Colorado

9. Dr. Jon T. Butler

Naval Postgraduate School
Monterey, California

10. Dr. Pantelimon Stanica

Naval Postgraduate School
Monterey, California

 100

11. Dr. Robert L. Herklotz
Program Manager, Information Operations and Security
Air Force Office of Scientific Research (AFOSR/RSL)
Arlington, Virginia

12. J. L. Shafer

U.S. Naval Academy Department of Electrical Engineering
Annapolis, Maryland

13 C. J. Johnson
 Naval Postgraduate School
 Monterey, California

